
./src/agg_renderer.os

./agg/src

./src/graphics.os

./src/font_set .os

./agg/src/agg_vcgen_m arkers_term .o

./src/param s.os

./agg/src/agg_im age_filters.o

./bindings/python/m apnik_sym bolizer.os

./src/m em ory.os

./bindings/python/m apnik_font_engine.os

./plugins/input /shape/dbffile.os

./agg/src/agg_line_aa_basics.o

./src/save_m ap.os

./bindings/python/m apnik_view_t ransform .os

./src/color.os

./agg/libagg.a

./src/font_engine_freetype.os

./src/st roke.os

./bindings/python/m apnik_im age.os

./src/im age_ut il.os

./bindings/python/m apnik_datasource_cache.os

./agg/include

./bindings/python/m apnik_rule.os

./agg/src/agg_bezier_arc.o

./bindings/python/m apnik_featureset .os

./agg/src/agg_arc.o

./plugins/input /shape/shapefile.os

./plugins/input /raster/raster_datasource.os

./plugins/input /raster/raster_featureset .os

./src/unicode.os

./bindings/python/m apnik/ogcserver

./bindings/python/m apnik_m ap.os

./src/arrow.os

./plugins

./plugins/input /raster/raster.input

./agg/src/agg_vcgen_contour.o

./agg/src/agg_t rans_warp_m agnifier.o

./bindings/python/m apnik_datasource.os

./plugins/input /shape/shape_featureset .os

./src/load_m ap.os

./bindings/python/m apnik_point_sym bolizer.os

./src/line_pat tern_sym bolizer.os

./bindings/python/m apnik

./plugins/input /raster

./src/m ap.os
./src/wkb.os

./agg/src/agg_vcgen_st roke.o

./agg/src/agg_gsv_text .o

./plugins/input /shape/shape.os

./bindings

./src

./bindings/python/m apnik_filter.os

./agg/src/agg_vcgen_bspline.o

./bindings/python/m apnik_coord.os

./src/envelope.os

./agg/src/agg_vpgen_segm entator.o

./bindings/python/m apnik_layer.os

./bindings/python/m apnik_line_sym bolizer.os

./src/shield_sym bolizer.os

./agg/src/agg_t rans_double_path.o

./src/project ion.os

./src/t iff_reader.os

./bindings/python/m apnik_proj_t ransform .os

./bindings/python/m apnik_style.os

./bindings/python/m apnik_shield_sym bolizer.os

./src/im age_reader.os

./agg/src/agg_bspline.o

./agg/src/agg_t rans_single_path.o

./plugins/input /raster/raster_info.os

./agg/src/agg_vcgen_dash.o

./bindings/python/m apnik_project ion.os

./bindings/python/m apnik_im age_view.os

./src/distance.os

./src/datasource_cache.os

./bindings/python/m apnik_param eters.os

./src/plugin.os

./agg/src/agg_arrowhead.o

./bindings/python/m apnik_feature.os

./agg/src/agg_em bedded_raster_fonts.o

./src/libm apnik.so

./src/placem ent_finder.os

./agg/src/agg_sqrt_tables.o

./agg/src/agg_vpgen_clip_polyline.o

./bindings/python/m apnik_raster_sym bolizer.os

./agg/src/agg_line_profile_aa.o

./bindings/python/m apnik_line_pat tern_sym bolizer.os

./bindings/python/m apnik_color.os

./src/proj_t ransform .os

./src/m em ory_datasource.os

./plugins/input

./bindings/python/m apnik_python.os

./src/png_reader.os

./bindings/python/m apnik_envelope.os

./bindings/python/m apnik_st roke.os

./plugins/input /shape/shape.input

./bindings/python/m apnik_query.os

./src/point_sym bolizer.os

./src/filter_factory.os

./bindings/python/m apnik_polygon_sym bolizer.os

./agg/src/agg_vcgen_sm ooth_poly1.o

./plugins/input /shape/shape_index_featureset .os

./bindings/python/python_cairo.os

./src/sym bolizer.os

./bindings/python/_m apnik.so

./agg/src/agg_t rans_affine.o

./src/polygon_pat tern_sym bolizer.os

./bindings/python/m apnik_polygon_pat tern_sym bolizer.os

./agg/src/agg_curves.o

./src/text_sym bolizer.os

./src/scale_denom inator.os

./plugins/input /shape/shape_io.os

./src/layer.os

./agg

./src/libxm l2_loader.os

./agg/src/agg_vpgen_clip_polygon.o

./plugins/input /shape

./bindings/python/m apnik_geom etry.os

./bindings/python/m apnik_text_sym bolizer.os

./agg/src/agg_rounded_rect .o

./bindings/python

SCons 2.3.4
Design

Steven Knight

version 2.3.4
Copyright © 2001 Steven Knight
Publication date 2001

Copyright (c) 2001 Steven Knight Portions of this document, by the same author, were previously published Copyright 2000
by CodeSourcery LLC, under the Software Carpentry Open Publication License, the terms of which are available at http://
www.software-carpentry.com/openpub-license.html [http://www.software-carpentry.com/openpub-license.html].

http://www.software-carpentry.com/openpub-license.html
http://www.software-carpentry.com/openpub-license.html
http://www.software-carpentry.com/openpub-license.html

iii

Table of Contents
1. Introduction ... 1

1.1. About This Document ... 1
2. Goals .. 2

2.1. Fixing Make's problems ... 3
2.2. Fixing Cons's problems ... 3

3. Overview ... 4
3.1. Architecture ... 4
3.2. Build Engine ... 5

3.2.1. Python API ... 5
3.2.2. Single-image execution ... 5
3.2.3. Dependency analysis .. 5
3.2.4. Customized output ... 6
3.2.5. Build failures .. 6

3.3. Interfaces .. 6
3.3.1. Native Python interface ... 6
3.3.2. Makefile interface .. 6
3.3.3. Graphical interfaces .. 7

4. Build Engine API ... 8
4.1. General Principles .. 8

4.1.1. Keyword arguments ... 8
4.1.2. Internal object representation ... 8

4.2. Construction Environments ... 8
4.2.1. Construction variables .. 9
4.2.2. Fetching construction variables .. 9
4.2.3. Copying a construction environment .. 9
4.2.4. Multiple construction environments ... 10
4.2.5. Variable substitution ... 10

4.3. Builder Objects .. 11
4.3.1. Specifying multiple inputs ... 12
4.3.2. Specifying multiple targets ... 12
4.3.3. File prefixes and suffixes ... 13
4.3.4. Builder object exceptions ... 13
4.3.5. User-defined Builder objects .. 13
4.3.6. Copying Builder Objects ... 14
4.3.7. Special-purpose build rules .. 15
4.3.8. The Make Builder .. 15
4.3.9. Builder maps ... 15

4.4. Dependencies ... 16
4.4.1. Automatic dependencies .. 16
4.4.2. Implicit dependencies .. 16
4.4.3. Ignoring dependencies ... 17
4.4.4. Explicit dependencies .. 17

4.5. Scanner Objects .. 17
4.5.1. User-defined Scanner objects .. 18
4.5.2. Copying Scanner Objects ... 18
4.5.3. Scanner maps ... 19

4.6. Targets .. 19
4.6.1. Building targets ... 19
4.6.2. Removing targets ... 19
4.6.3. Suppressing cleanup removal of build-targets .. 20
4.6.4. Suppressing build-target removal .. 20

iv

4.6.5. Default targets ... 20
4.6.6. File installation .. 21
4.6.7. Target aliases .. 21

4.7. Customizing output ... 21
4.8. Separate source and build trees ... 22
4.9. Variant builds .. 23
4.10. Code repositories .. 23
4.11. Derived-file caching .. 24
4.12. Job management ... 24

5. Native Python Interface .. 25
5.1. Configuration files .. 25
5.2. Python syntax .. 25
5.3. Subsidiary configuration Files ... 26
5.4. Variable scoping in subsidiary files .. 26
5.5. Hierarchical builds .. 27
5.6. Sharing construction environments .. 27
5.7. Help ... 27
5.8. Debug ... 28

6. Other Issues ... 29
6.1. Interaction with SC-config ... 29
6.2. Interaction with test infrastructures .. 29
6.3. Java dependencies ... 29
6.4. Limitations of digital signature calculation .. 30
6.5. Remote execution ... 30
6.6. Conditional builds ... 30

7. Background .. 31
8. Summary ... 32
9. Acknowledgements .. 33

v

List of Figures
3.1. SCons Architecture ... 4

1 Introduction

The SCons tool provides an easy-to-use, feature-rich interface for constructing software. Architecturally, SCons sep-
arates its dependency analysis and external object management into an interface-independent Build Engine that could
be embedded in any software system that can run Python.

At the command line, SCons presents an easily-grasped tool where configuration files are Python scripts, reducing the
need to learn new build-tool syntax. Inexperienced users can use intelligent methods that ``do the right thing'' to build
software with a minimum of fuss. Sophisticated users can use a rich set of underlying features for finer control of the
build process, including mechanisms for easily extending the build process to new file types.

Dependencies are tracked using digital signatures, which provide more robust dependency analysis than file time
stamps. Implicit dependencies are determined automatically by scanning the contents of source files, avoiding the need
for laborious and fragile maintenance of static lists of dependencies in configuration files.

The SCons tool supports use of files from one or more central code repositories, a mechanism for caching derived
files, and parallel builds. The tool also includes a framework for sharing build environments, which allows system
administrators or integrators to define appropriate build parameters for use by other users.

1.1. About This Document
This document is an ongoing work-in-progress to write down the ideas and tradeoffs that have gone, and will go into,
the SCons design. As such, this is intended primarily for use by developers and others working on SCons, although
it is also intended to serve as a detailed overview of SCons for other interested parties. It will be continually updated
and evolve, and will likely overlap with other documentation produced by the project. Sections of this document that
deal with syntax, for example, may move or be copied into a user guide or reference manual.

So please don't assume that everything mentioned here has been decided and carved in stone. If you have ideas for
improvements, or questions about things that don't seem to make any sense, please help improve the design by speaking
up about them.

2 Goals

As a next-generation build tool, SCons should fundamentally improve on its predecessors. Rather than simply being
driven by trying to not be like previous tools, SCons aims to satisfy the following goals:

Practicality
The SCons design emphasizes an implementable feature set that lets users get practical, useful work done. SCons
is helped in this regard by its roots in Cons, which has had its feature set honed by several years of input from
a dedicated band of users.

Portability
SCons is intended as a portable build tool, able to handle software construction tasks on a variety of operating
systems. It should be possible (although not mandatory) to use SCons so that the same configuration file builds the
same software correctly on, for example, both Linux and Windows NT. Consequently, SCons should hide from
users operating-system-dependent details such as filename extensions (for example, .o vs. .obj).

Usability
Novice users should be able to grasp quickly the rudiments of using SCons to build their software. This extends
to installing SCons, too. Installation should be painless, and the installed SCons should work "out of the box"
to build most software.

This goal should be kept in mind during implementation, when there is always a tendency to try to optimize too
early. Speed is nice, but not as important as clarity and ease of use.

Utility
SCons should also provide a rich enough set of features to accommodate building more complicated software
projects. However, the features required for building complicated software projects should not get in the way of
novice users. (See the previous goal.) In other words, complexity should be available when it's needed but not
required to get work done. Practically, this implies that SCons shouldn't be dumbed down to the point it excludes
complicated software builds.

Sharability
As a key element in balancing the conflicting needs of Usability and Utility, SCons should provide mech-
anisms to allow SCons users to share build rules, dependency scanners, and other objects and recipes for con-
structing software. A good sharing mechanism should support the model wherein most developers on a project
use rules and templates that are created and maintained by a local integrator or build-master,

Extensibility
SCons should provide mechanisms for easily extending its capabilities, including building new types of files,
adding new types of dependency scanning, being able to accomodate dependencies between objects other than
files, etc.

Fixing Make's problems

3

Flexibility
In addition to providing a useful command-line interface, SCons should provide the right architectural framework
for embedding its dependency management in other interfaces. SCons would help strengthen other GUIs or IDEs
and the additional requirements of the other interfaces would help broaden and solidify the core SCons dependency
management.

2.1. Fixing Make's problems

2.2. Fixing Cons's problems

3 Overview

3.1. Architecture
The heart of SCons is its Build Engine. The SCons Build Engine is a Python module that manages dependencies
between external objects such as files or database records. The Build Engine is designed to be interface-neutral and
easily embeddable in any software system that needs dependency analysis between updatable objects.

The key parts of the Build Engine architecture are captured in the following quasi-UML diagram:

Figure 3.1. SCons Architecture

Node.FS

Int ercessor.FS Int ercessor.DB

Scanner

Builder

Int ercessorEnvironm ent

Node.DB

Dir File Table Record Fie ld

Node

dependency

*

srcnode

1

repnode

1

0..1

0..1

*

*

build()

scan()

1

1

*

1* *

The point of SCons is to manage dependencies between arbitrary external objects. Consequently, the Build Engine
does not restrict or specify the nature of the external objects it manages, but instead relies on subclass of the Node
class to interact with the external system or systems (file systems, database management systems) that maintain the
objects being examined or updated.

Build Engine

5

The Build Engine presents to the software system in which it is embedded a Python API for specifying source (input)
and target (output) objects, rules for building/updating objects, rules for scanning objects for dependencies, etc. Above
its Python API, the Build Engine is completely interface-independent, and can be encapsulated by any other software
that supports embedded Python.

Software that chooses to use the Build Engine for dependency management interacts with it through Construction
Environments. A Construction Environment consists of a dictionary of environment variables, and one or more asso-
ciated Scanner objects and Builder objects. The Python API is used to form these associations.

A Scanner object specifies how to examine a type of source object (C source file, database record) for dependency
information. A Scanner object may use variables from the associated Construction Environment to modify how it
scans an object: specifying a search path for included files, which field in a database record to consult, etc.

A Builder object specifies how to update a type of target object: executable program, object file, database field,
etc. Like a Scanner object, a Builder object may use variables from the associated Construction Environment to
modify how it builds an object: specifying flags to a compiler, using a different update function, etc.

Scanner and Builder objects will return one or more Node objects that represent external objects. Node objects
are the means by which the Build Engine tracks dependencies: A Node may represent a source (input) object that
should already exist, or a target (output) object which may be built, or both. The Node class is sub-classed to represent
external objects of specific type: files, directories, database fields or records, etc. Because dependency information,
however, is tracked by the top-level Node methods and attributes, dependencies can exist between nodes representing
different external object types. For example, building a file could be made dependent on the value of a given field in
a database record, or a database table could depend on the contents of an external file.

The Build Engine uses a Job class (not displayed) to manage the actual work of updating external target objects:
spawning commands to build files, submitting the necessary commands to update a database record, etc. The Job
class has sub-classes to handle differences between spawning jobs in parallel and serially.

The Build Engine also uses a Signature class (not displayed) to maintain information about whether an external
object is up-to-date. Target objects with out-of-date signatures are updated using the appropriate Builder object.

3.2. Build Engine
More detailed discussion of some of the Build Engine's characteristics:

3.2.1. Python API
The Build Engine can be embedded in any other software that supports embedding Python: in a GUI, in a wrapper script
that interprets classic Makefile syntax, or in any other software that can translate its dependency representation into
the appropriate calls to the Build Engine API. describes in detail the specification for a "Native Python" interface that
will drive the SCons implementation effort.

3.2.2. Single-image execution
When building/updating the objects, the Build Engine operates as a single executable with a complete Directed Acyclic
Graph (DAG) of the dependencies in the entire build tree. This is in stark contrast to the commonplace recursive use
of Make to handle hierarchical directory-tree builds.

3.2.3. Dependency analysis
Dependency analysis is carried out via digital signatures (a.k.a. "fingerprints"). Contents of object are examined and
reduced to a number that can be stored and compared to see if the object has changed. Additionally, SCons uses the

Customized output

6

same signature technique on the command-lines that are executed to update an object. If the command-line has changed
since the last time, then the object must be rebuilt.

3.2.4. Customized output
The output of Build Engine is customizable through user-defined functions. This could be used to print additional
desired information about what SCons is doing, or tailor output to a specific build analyzer, GUI, or IDE.

3.2.5. Build failures
SCons detects build failures via the exit status from the tools used to build the target files. By default, a failed exit
status (non-zero on UNIX systems) terminates the build with an appropriate error message. An appropriate class from
the Python library will interpret build-tool failures via an OS-independent API.

If multiple tasks are executing in a parallel build, and one tool returns failure, SCons will not initiate any further build
tasks, but allow the other build tasks to complete before terminating.

A -k command-line option may be used to ignore errors and continue building other targets. In no case will a target
that depends on a failed build be rebuilt.

3.3. Interfaces
As previously described, the SCons Build Engine is interface-independent above its Python API, and can be embedded
in any software system that can translate its dependency requirements into the necessary Python calls.

The "main" SCons interface for implementation purposes, uses Python scripts as configuration files. Because this
exposes the Build Engine's Python API to the user, it is current called the "Native Python" interface.

This section will also discuss how SCons will function in the context of two other interfaces: the Makefile interface
of the classic Make utility, and a hypothetical graphical user interface (GUI).

3.3.1. Native Python interface
The Native Python interface is intended to be the primary interface by which users will know SCons--that is, it is the
interface they will use if they actually type SCons at a command-line prompt.

In the Native Python interface, SCons configuration files are simply Python scripts that directly invoke methods from
the Build Engine's Python API to specify target files to be built, rules for building the target files, and dependencies.
Additional methods, specific to this interface, are added to handle functionality that is specific to the Native Python
interface: reading a subsidiary configuration file; copying target files to an installation directory; etc.

Because configuration files are Python scripts, Python flow control can be used to provide very flexible manipulation
of objects and dependencies. For example, a function could be used to invoke a common set of methods on a file, and
called iteratively over an array of files.

As an additional advantage, syntax errors in SCons Native Python configuration files will be caught by the Python
parser. Target-building does not begin until after all configuration files are read, so a syntax error will not cause a
build to fail half-way.

3.3.2. Makefile interface
An alternate SCons interface would provide backwards compatibility with the classic Make utility. This would be done
by embedding the SCons Build Engine in a Python script that can translate existing Makefiles into the underlying

Graphical interfaces

7

calls to the Build Engine's Python API for building and tracking dependencies. Here are approaches to solving some
of the issues that arise from marrying these two pieces:

• Makefile suffix rules can be translated into an appropriate Builder object with suffix maps from the Construc-
tion Environment.

• Long lists of static dependences appended to a Makefile by various "make depend" schemes can be preserved
but supplemented by the more accurate dependency information provided by Scanner objects.

• Recursive invocations of Make can be avoided by reading up the subsidiary Makefile instead.

Lest this seem like too outlandish an undertaking, there is a working example of this approach: Gary Holt's Make++
utility is a Perl script that provides admirably complete parsing of complicated Makefiles around an internal build
engine inspired, in part, by the classic Cons utility.

3.3.3. Graphical interfaces
The SCons Build Engine is designed from the ground up to be embedded into multiple interfaces. Consequently,
embedding the dependency capabilities of SCons into graphical interface would be a matter of mapping the GUI's
dependency representation (either implicit or explicit) into corresponding calls to the Python API of the SCons Build
Engine.

Note, however, that this proposal leaves the problem of designed a good graphical interface for representing software
build dependencies to people with actual GUI design experience...

4 Build Engine API

4.1. General Principles

4.1.1. Keyword arguments
All methods and functions in this API will support the use of keyword arguments in calls, for the sake of explicitness
and readability. For brevity in the hands of experts, most methods and functions will also support positional arguments
for their most-commonly-used arguments. As an explicit example, the following two lines will each arrange for an
executable program named foo (or foo.exe on a Win32 system) to be compiled from the foo.c source file:

 env.Program(target = 'foo', source = 'foo.c')

 env.Program('foo', 'foo.c')

4.1.2. Internal object representation
All methods and functions use internal (Python) objects that represent the external objects (files, for example) for
which they perform dependency analysis.

All methods and functions in this API that accept an external object as an argument will accept either a string descrip-
tion or an object reference. For example, the two following two-line examples are equivalent:

 env.Object(target = 'foo.o', source = 'foo.c')
 env.Program(target = 'foo', 'foo.o') # builds foo from foo.o

 foo_obj = env.Object(target = 'foo.o', source = 'foo.c')
 env.Program(target = 'foo', foo_obj) # builds foo from foo.o

4.2. Construction Environments
A construction environment is the basic means by which a software system interacts with the SCons Python
API to control a build process.

Construction variables

9

A construction environment is an object with associated methods for generating target files of various types
(Builder objects), other associated object methods for automatically determining dependencies from the contents
of various types of source files (Scanner objects), and a dictionary of values used by these methods.

Passing no arguments to the Environment instantiation creates a construction environment with default
values for the current platform:

 env = Environment()

4.2.1. Construction variables
A construction environment has an associated dictionary of construction variables that control
how the build is performed. By default, the Environment method creates a construction environment
with values that make most software build "out of the box" on the host system. These default values will be generated
at the time SCons is installed using functionality similar to that provided by GNU Autoconf. 1 At a minimum, there
will be pre-configured sets of default values that will provide reasonable defaults for UNIX and Windows NT.

The default construction environment values may be overridden when a new construction envi-
ronment is created by specifying keyword arguments:

 env = Environment(CC = 'gcc',
 CCFLAGS = '-g',
 CPPPATH = ['.', 'src', '/usr/include'],
 LIBPATH = ['/usr/lib', '.'])

4.2.2. Fetching construction variables
A copy of the dictionary of construction variables can be returned using the Dictionary method:

 env = Environment()
 dict = env.Dictionary()

If any arguments are supplied, then just the corresponding value(s) are returned:

 ccflags = env.Dictionary('CCFLAGS')
 cc, ld = env.Dictionary('CC', 'LD')

4.2.3. Copying a construction environment
A method exists to return a copy of an existing environment, with any overridden values specified as keyword argu-
ments to the method:

1 It would be nice if we could avoid re-inventing the wheel here by using some other Python-based tool Autoconf replacement--like what was
supposed to come out of the Software Carpentry configuration tool contest. It will probably be most efficient to roll our own logic initially and
convert if something better does come along.

Multiple construction environments

10

 env = Environment()
 debug = env.Copy(CCFLAGS = '-g')

4.2.4. Multiple construction environments
Different external objects often require different build characteristics. Multiple construction environments
may be defined, each with different values:

 env = Environment(CCFLAGS = '')
 debug = Environment(CCFLAGS = '-g')
 env.Make(target = 'hello', source = 'hello.c')
 debug.Make(target = 'hello-debug', source = 'hello.c')

Dictionaries of values from multiple construction environments may be passed to the Environment
instantiation or the Copy method, in which case the last-specified dictionary value wins:

 env1 = Environment(CCFLAGS = '-O', LDFLAGS = '-d')
 env2 = Environment(CCFLAGS = '-g')
 new = Environment(env1.Dictionary(), env2.Dictionary())

The new environment in the above example retains LDFLAGS = '-d' from the env1 environment, and CCFLAGS
= '-g' from the env2 environment.

4.2.5. Variable substitution
Within a construction command, any variable from the construction environment may be interpolated by
prefixing the name of the construction with $:

 MyBuilder = Builder(command = "$XX $XXFLAGS -c $_INPUTS -o $target")

 env.Command(targets = 'bar.out', sources = 'bar.in',
 command = "sed '1d' < $source > $target")

Variable substitution is recursive: the command line is expanded until no more substitutions can be made.

Variable names following the $ may be enclosed in braces. This can be used to concatenate an interpolated value with
an alphanumeric character:

 VerboseBuilder = Builder(command = "$XX -${XXFLAGS}v > $target")

The variable within braces may contain a pair of parentheses after a Python function name to be evaluated (for example,
${map()}). SCons will interpolate the return value from the function (presumably a string):

 env = Environment(FUNC = myfunc)
 env.Command(target = 'foo.out', source = 'foo.in',

Builder Objects

11

 command = "${FUNC($<)}")

If a referenced variable is not defined in the construction environment, the null string is interpolated.

The following special variables can also be used:

$targets
All target file names. If multiple targets are specified in an array, $targets expands to the entire list of targets,
separated by a single space.

Individual targets from a list may be extracted by enclosing the targets keyword in braces and using the
appropriate Python array index or slice:

 ${targets[0]} # expands to the first target

 ${targets[1:]} # expands to all but the first target

 ${targets[1:-1]} # expands to all but the first and last targets

$target
A synonym for ${targets[0]}, the first target specified.

$sources
All input file names. Any input file names that are used anywhere else on the current command line (via
${sources[0]}, ${sources{[1]}, etc.) are removed from the expanded list.

Any of the above special variables may be enclosed in braces and followed immediately by one of the following
attributes to select just a portion of the expanded path name:

.base
Basename: the directory plus the file name, minus any file suffix.

.dir
The directory in which the file lives. This is a relative path, where appropriate.

.file
The file name, minus any directory portion.

.suffix
The file name suffix (that is, the right-most dot in the file name, and all characters to the right of that).

.filebase
The file name (no directory portion), minus any file suffix.

.abspath
The absolute path to the file.

4.3. Builder Objects
By default, SCons supplies (and uses) a number of pre-defined Builder objects:

Object compile or assemble an object file

Library archive files into a library

Specifying multiple inputs

12

SharedLibrary archive files into a shared library

Program link objects and/or libraries into an executable

Make build according to file suffixes; see below

A construction environment can be explicitly initialized with associated Builder objects that will be bound
to the construction environment object:

 env = Environment(BUILDERS = ['Object', 'Program'])

Builder objects bound to a construction environment can be called directly as methods. When invoked,
a Builder object returns a (list of) objects that it will build:

 obj = env.Object(target ='hello.o', source = 'hello.c')
 lib = env.Library(target ='libfoo.a',
 source = ['aaa.c', 'bbb.c'])
 slib = env.SharedLibrary(target ='libbar.so',
 source = ['xxx.c', 'yyy.c'])
 prog = env.Program(target ='hello',
 source = ['hello.o', 'libfoo.a', 'libbar.so'])

4.3.1. Specifying multiple inputs
Multiple input files that go into creating a target file may be passed in as a single string, with the individual file names
separated by white space:

 env.Library(target = 'foo.a', source = 'aaa.c bbb.c ccc.c')
 env.Object(target = 'yyy.o', source = 'yyy.c')
 env.Program(target = 'bar', source = 'xxx.c yyy.o foo.a')

Alternatively, multiple input files that go into creating a target file may be passed in as an array. This allows input
files to be specified using their object representation:

 env.Library(target = 'foo.a', source = ['aaa.c', 'bbb.c', 'ccc.c'])
 yyy_obj = env.Object(target = 'yyy.o', source = 'yyy.c')
 env.Program(target = 'bar', source = ['xxx.c', yyy_obj, 'foo.a'])

Individual string elements within an array of input files are not further split into white-space separated file names. This
allows file names that contain white space to be specified by putting the value into an array:

 env.Program(target = 'foo', source = ['an input file.c'])

4.3.2. Specifying multiple targets
Conversely, the generated target may be a string listing multiple files separated by white space:

File prefixes and suffixes

13

 env.Object(target = 'grammar.o y.tab.h', source = 'grammar.y')

An array of multiple target files can be used to mix string and object representations, or to accomodate file names
that contain white space:

 env.Program(target = ['my program'], source = 'input.c')

4.3.3. File prefixes and suffixes
For portability, if the target file name does not already have an appropriate file prefix or suffix, the Builder objects
will append one appropriate for the file type on the current system:

 # builds 'hello.o' on UNIX, 'hello.obj' on Windows NT:
 obj = env.Object(target ='hello', source = 'hello.c')

 # builds 'libfoo.a' on UNIX, 'foo.lib' on Windows NT:
 lib = env.Library(target ='foo', source = ['aaa.c', 'bbb.c'])

 # builds 'libbar.so' on UNIX, 'bar.dll' on Windows NT:
 slib = env.SharedLibrary(target ='bar', source = ['xxx.c', 'yyy.c'])

 # builds 'hello' on UNIX, 'hello.exe' on Windows NT:
 prog = env.Program(target ='hello',
 source = ['hello.o', 'libfoo.a', 'libbar.so'])

4.3.4. Builder object exceptions
Builder objects raise the following exceptions on error:

4.3.5. User-defined Builder objects
Users can define additional Builder objects for specific external object types unknown to SCons. A Builder
object may build its target by executing an external command:

 WebPage = Builder(command = 'htmlgen $HTMLGENFLAGS $sources > $target',
 suffix = '.html',
 src_suffix = '.in')

Alternatively, a Builder object may also build its target by executing a Python function:

 def update(dest):
 # [code to update the object]
 return 1

 OtherBuilder1 = Builder(function = update,

Copying Builder Objects

14

 src_suffix = ['.in', '.input'])

An optional argument to pass to the function may be specified:

 def update_arg(dest, arg):
 # [code to update the object]
 return 1

 OtherBuilder2 = Builder(function = update_arg,
 function_arg = 'xyzzy',
 src_suffix = ['.in', '.input'])

Both an external command and an internal function may be specified, in which case the function will be called to build
the object first, followed by the command line.

User-defined Builder objects can be used like the default Builder objects to initialize construction en-
vironments.

 WebPage = Builder(command = 'htmlgen $HTMLGENFLAGS $sources > $target',
 suffix = '.html',
 src_suffix = '.in')
 env = Environment(BUILDERS = ['WebPage'])
 env.WebPage(target = 'foo.html', source = 'foo.in')
 # Builds 'bar.html' on UNIX, 'bar.htm' on Windows NT:
 env.WebPage(target = 'bar', source = 'bar.in')

The command-line specification can interpolate variables from the construction environment; see "Variable
substitution," above.

A Builder object may optionally be initialized with a list of:

• the prefix of the target file (e.g., 'lib' for libraries)

• the suffix of the target file (e.g., '.a' for libraries)

• the expected suffixes of the input files (e.g., '.o' for object files)

These arguments are used in automatic dependency analysis and to generate output file names that don't have suffixes
supplied explicitly.

4.3.6. Copying Builder Objects
A Copy method exists to return a copy of an existing Builder object, with any overridden values specified as
keyword arguments to the method:

 build = Builder(function = my_build)
 build_out = build.Copy(suffix = '.out')

Typically, Builder objects will be supplied by a tool-master or administrator through a shared construction
environment.

Special-purpose build rules

15

4.3.7. Special-purpose build rules
A pre-defined Command builder exists to associate a target file with a specific command or list of commands for
building the file:

 env.Command(target = 'foo.out', source =
 command = 'foo.in', "foo.process $sources > $target")

 commands = ["bar.process -o .tmpfile $sources",
 "mv .tmpfile $target"]
 env.Command(target = 'bar.out', source = 'bar.in', command = commands)

This is useful when it's too cumbersome to create a Builder object just to build a single file in a special way.

4.3.8. The Make Builder
A pre-defined Builder object named Make exists to make simple builds as easy as possible for users, at the expense
of sacrificing some build portability.

The following minimal example builds the 'hello' program from the 'hello.c' source file:

 Environment().Make('hello', 'hello.c')

Users of the Make Builder object are not required to understand intermediate steps involved in generating a file--
for example, the distinction between compiling source code into an object file, and then linking object files into an
executable. The details of intermediate steps are handled by the invoked method. Users that need to, however, can
specify intermediate steps explicitly:

 env = Environment()
 env.Make(target = 'hello.o', source = 'hello.c')
 env.Make(target = 'hello', source = 'hello.o')

The Make method understands the file suffixes specified and "does the right thing" to generate the target object and
program files, respectively. It does this by examining the specified output suffixes for the Builder objects bound
to the environment.

Because file name suffixes in the target and source file names must be specified, the Make method can't be used
portably across operating systems. In other words, for the example above, the Make builder will not generate
hello.exe on Windows NT.

4.3.9. Builder maps
The env.Make method "does the right thing" to build different file types because it uses a dictionary from the con-
struction environment that maps file suffixes to the appropriate Builder object. This BUILDERMAP can
be initialized at instantiation:

 env = Environment(BUILDERMAP = {
 '.o' : Object,

Dependencies

16

 '.a' : Library,
 '.html' : WebPage,
 '' : Program,
 })

With the BUILDERMAP properly initialized, the env.Make method can be used to build additional file types:

 env.Make(target = 'index.html', source = 'index.input')

Builder objects referenced in the BUILDERMAP do not need to be listed separately in the BUILDERS variable. The
construction environment will bind the union of the Builder objects listed in both variables.

4.4. Dependencies

4.4.1. Automatic dependencies
By default, SCons assumes that a target file has automatic dependencies on the:

tool used to build the target file
contents of the input files
command line used to build the target file

If any of these changes, the target file will be rebuilt.

4.4.2. Implicit dependencies
Additionally, SCons can scan the contents of files for implicit dependencies on other files. For example,
SCons will scan the contents of a .c file and determine that any object created from it is dependent on any .h files
specified via #include. SCons, therefore, "does the right thing" without needing to have these dependencies listed
explicitly:

 % cat Construct
 env = Environment()
 env.Program('hello', 'hello.c')
 % cat hello.c
 #include "hello_string.h"
 main()
 {
 printf("%s\n", STRING);
 }
 % cat > hello_string.h
 #define STRING "Hello, world!\n"
 % scons .
 gcc -c hello.c -o hello.o
 gcc -o hello hello.c
 % ./hello
 Hello, world!
 % cat > hello_string.h
 #define STRING "Hello, world, hello!\n"

Ignoring dependencies

17

 % scons .
 gcc -c hello.c -o hello.o
 gcc -o hello hello.c
 % ./hello
 Hello, world, hello!
 %

4.4.3. Ignoring dependencies
Undesirable automatic dependencies or implicit dependencies may be ignored:

 env.Program(target = 'bar', source = 'bar.c')
 env.Ignore('bar', '/usr/bin/gcc', 'version.h')

In the above example, the bar program will not be rebuilt if the /usr/bin/gcc compiler or the version.h file
change.

4.4.4. Explicit dependencies
Dependencies that are unknown to SCons may be specified explicitly in an SCons configuration file:

 env.Dependency(target = 'output1', dependency = 'input_1 input_2')
 env.Dependency(target = 'output2', dependency = ['input_1', 'input_2'])
 env.Dependency(target = 'output3', dependency = ['white space input'])

 env.Dependency(target = 'output_a output_b', dependency = 'input_3')
 env.Dependency(target = ['output_c', 'output_d'], dependency = 'input_4')
 env.Dependency(target = ['white space output'], dependency = 'input_5')

Just like the target keyword argument, the dependency keyword argument may be specified as a string of white-
space separated file names, or as an array.

A dependency on an SCons configuration file itself may be specified explicitly to force a rebuild whenever the con-
figuration file changes:

 env.Dependency(target = 'archive.tar.gz', dependency = 'SConstruct')

4.5. Scanner Objects
Analagous to the previously-described Builder objects, SCons supplies (and uses) Scanner objects to search the
contents of a file for implicit dependency files:

CScan scan .{c,C,cc,cxx,cpp} files for #include dependencies

A construction environment can be explicitly initialized with associated Scanner objects:

User-defined Scanner objects

18

 env = Environment(SCANNERS = ['CScan', 'M4Scan'])

Scanner objects bound to a construction environment can be associated directly with specified files:

 env.CScan('foo.c', 'bar.c')
 env.M4Scan('input.m4')

4.5.1. User-defined Scanner objects
A user may define a Scanner object to scan a type of file for implicit dependencies:

 def scanner1(file_contents):
 # search for dependencies
 return dependency_list

 FirstScan = Scanner(function = scanner1)

The scanner function must return a list of dependencies that its finds based on analyzing the file contents it is passed
as an argument.

The scanner function, when invoked, will be passed the calling environment. The scanner function can use con-
struction environments from the passed environment to affect how it performs its dependency scan--the
canonical example being to use some sort of search-path construction variable to look for dependency files in other
directories:

 def scanner2(file_contents, env):
 path = env.{'SCANNERPATH'} # XXX
 # search for dependencies using 'path'
 return dependency_list

 SecondScan = Scanner(function = scanner2)

The user may specify an additional argument when the Scanner object is created. When the scanner is invoked, the
additional argument will be passed to the scanner funciton, which can be used in any way the scanner function sees fit:

 def scanner3(file_contents, env, arg):
 # skip 'arg' lines, then search for dependencies
 return dependency_list

 Skip_3_Lines_Scan = Scanner(function = scanner2, argument = 3)
 Skip_6_Lines_Scan = Scanner(function = scanner2, argument = 6)

4.5.2. Copying Scanner Objects
A method exists to return a copy of an existing Scanner object, with any overridden values specified as keyword
arguments to the method:

Scanner maps

19

 scan = Scanner(function = my_scan)
 scan_path = scan.Copy(path = '%SCANNERPATH')

Typically, Scanner objects will be supplied by a tool-master or administrator through a shared construction
environment.

4.5.3. Scanner maps
Each construction environment has a SCANNERMAP, a dictionary that associates different file suffixes with
a scanner object that can be used to generate a list of dependencies from the contents of that file. This SCANNERMAP
can be initialized at instantiation:

 env = Environment(SCANNERMAP = {
 '.c' : CScan,
 '.cc' : CScan,
 '.m4' : M4Scan,
 })

Scanner objects referenced in the SCANNERMAP do not need to be listed separately in the SCANNERS variable. The
construction environment will bind the union of the Scanner objects listed in both variables.

4.6. Targets
The methods in the build engine API described so far merely establish associations that describe file dependencies,
how a file should be scanned, etc. Since the real point is to actually build files, SCons also has methods that actually
direct the build engine to build, or otherwise manipulate, target files.

4.6.1. Building targets
One or more targets may be built as follows:

 env.Build(target = ['foo', 'bar'])

Note that specifying a directory (or other collective object) will cause all subsidiary/dependent objects to be built as
well:

 env.Build(target = '.')

 env.Build(target = 'builddir')

By default, SCons explicitly removes a target file before invoking the underlying function or command(s) to build it.

4.6.2. Removing targets
A "cleanup" operation of removing generated (target) files is performed as follows:

Suppressing cleanup removal of build-targets

20

 env.Clean(target = ['foo', 'bar'])

Like the Build method, the Clean method may be passed a directory or other collective object, in which case the
subsidiary target objects under the directory will be removed:

 env.Clean(target = '.')

 env.Clean(target = 'builddir')

(The directories themselves are not removed.)

4.6.3. Suppressing cleanup removal of build-targets
By default, SCons explicitly removes all build-targets when invoked to perform "cleanup". Files that should not be
removed during "cleanup" can be specified via the NoClean method:

env.Library(target = 'libfoo.a', source = ['aaa.c', 'bbb.c', 'ccc.c'])
env.NoClean('libfoo.a')

The NoClean operation has precedence over the Clean operation. A target that is specified as both Clean and NoClean,
will not be removed during a clean. In the following example, target 'foo' will not be removed during "cleanup":

env.Clean(target = 'foo')
env.NoClean('foo')

4.6.4. Suppressing build-target removal
As mentioned, by default, SCons explicitly removes a target file before invoking the underlying function or
command(s) to build it. Files that should not be removed before rebuilding can be specified via the Precious method:

 env.Library(target = 'libfoo.a', source = ['aaa.c', 'bbb.c', 'ccc.c'])
 env.Precious('libfoo.a')

4.6.5. Default targets
The user may specify default targets that will be built if there are no targets supplied on the command line:

 env.Default('install', 'src')

Multiple calls to the Default method (typically one per SConscript file) append their arguments to the list of
default targets.

File installation

21

4.6.6. File installation
Files may be installed in a destination directory:

 env.Install('/usr/bin', 'program1', 'program2')

Files may be renamed on installation:

 env.InstallAs('/usr/bin/xyzzy', 'xyzzy.in')

Multiple files may be renamed on installation by specifying equal-length lists of target and source files:

 env.InstallAs(['/usr/bin/foo', '/usr/bin/bar'],
 ['foo.in', 'bar.in'])

4.6.7. Target aliases
In order to provide convenient "shortcut" target names that expand to a specified list of targets, aliases may be estab-
lished:

 env.Alias(alias = 'install',
 targets = ['/sbin', '/usr/lib', '/usr/share/man'])

In this example, specifying a target of install will cause all the files in the associated directories to be built (that
is, installed).

An Alias may include one or more other Aliases in its list:

 env.Alias(alias = 'libraries', targets = ['lib'])
 env.Alias(alias = 'programs', targets = ['libraries', 'src'])

4.7. Customizing output
The SCons API supports the ability to customize, redirect, or suppress its printed output through user-defined functions.
SCons has several pre-defined points in its build process at which it calls a function to (potentially) print output. User-
defined functions can be specified for these call-back points when Build or Cleanis invoked:

 env.Build(target = '.',
 on_analysis = dump_dependency,
 pre_update = my_print_command,
 post_update = my_error_handler)
 on_error = my_error_handler)

Separate source and build trees

22

The specific call-back points are:

on_analysis
Called for every object, immediately after the object has been analyzed to see if it's out-of-date. Typically used to
print a trace of considered objects for debugging of unexpected dependencies.

pre_update
Called for every object that has been determined to be out-of-date before its update function or command is
executed. Typically used to print the command being called to update a target.

post_update
Called for every object after its update function or command has been executed. Typically used to report that a
top-level specified target is up-to-date or was not remade.

on_error
Called for every error returned by an update function or command. Typically used to report errors with some
string that will be identifiable to build-analysis tools.

Functions for each of these call-back points all take the same arguments:

 my_dump_dependency(target, level, status, update, dependencies)

where the arguments are:

target
The target object being considered.

level
Specifies how many levels the dependency analysis has recursed in order to consider the target. A value of 0
specifies a top-level target (that is, one passed to the Build or Clean method). Objects which a top-level
target is directly dependent upon have a level of <1>, their direct dependencies have a level of <2>, etc.
Typically used to indent output to reflect the recursive levels.

status
A string specifying the current status of the target ("unknown", "built", "error", "analyzed", etc.). A
complete list will be enumerated and described during implementation.

update
The command line or function name that will be (or has been) executed to update the target.

dependencies
A list of direct dependencies of the target.

4.8. Separate source and build trees
SCons allows target files to be built completely separately from the source files by "linking" a build directory to an
underlying source directory:

 env.Link('build', 'src')

 SConscript('build/SConscript')

Variant builds

23

SCons will copy (or hard link) necessary files (including the SConscript file) into the build directory hierarchy.
This allows the source directory to remain uncluttered by derived files.

4.9. Variant builds
The Link method may be used in conjunction with multiple construction environments to support variant
builds. The following SConstruct and SConscript files would build separate debug and production versions
of the same program side-by-side:

 % cat SConstruct
 env = Environment()
 env.Link('build/debug', 'src')
 env.Link('build/production', 'src')
 flags = '-g'
 SConscript('build/debug/SConscript', Export(env))
 flags = '-O'
 SConscript('build/production/SConscript', Export(env))
 % cat src/SConscript
 env = Environment(CCFLAGS = flags)
 env.Program('hello', 'hello.c')

The following example would build the appropriate program for the current compilation platform, without having to
clean any directories of object or executable files for other architectures:

 % cat SConstruct
 build_platform = os.path.join('build', sys.platform)
 Link(build_platform, 'src')
 SConscript(os.path.join(build_platform, 'SConscript'))
 % cat src/SConscript
 env = Environment
 env.Program('hello', 'hello.c')

4.10. Code repositories
SCons may use files from one or more shared code repositories in order to build local copies of changed target files.
A repository would typically be a central directory tree, maintained by an integrator, with known good libraries and
executables.

 Repository('/home/source/1.1', '/home/source/1.0')

Specified repositories will be searched in-order for any file (configuration file, input file, target file) that does not exist
in the local directory tree. When building a local target file, SCons will rewrite path names in the build command
to use the necessary repository files. This includes modifying lists of -I or -L flags to specify an appropriate set of
include paths for dependency analysis.

SCons will modify the Python sys.path variable to reflect the addition of repositories to the search path, so that
any imported modules or packages necessary for the build can be found in a repository, as well.

Derived-file caching

24

If an up-to-date target file is found in a code repository, the file will not be rebuilt or copied locally. Files that must
exist locally (for example, to run tests) may be specified:

 Local('program', 'libfoo.a')

in which case SCons will copy or link an up-to-date copy of the file from the appropriate repository.

4.11. Derived-file caching
SCons can maintain a cache directory of target files which may be shared among multiple builds. This reduces build
times by allowing developers working on a project together to share common target files:

 Cache('/var/tmp/build.cache/i386')

When a target file is generated, a copy is added to the cache. When generating a target file, if SCons determines that
a file that has been built with the exact same dependencies already exists in the specified cache, SCons will copy the
cached file rather than re-building the target.

Command-line options exist to modify the SCons caching behavior for a specific build, including disabling caching,
building dependencies in random order, and displaying commands as if cached files were built.

4.12. Job management
A simple API exists to inform the Build Engine how many jobs may be run simultaneously:

 Jobs(limit = 4)

5 Native Python Interface

The "Native Python" interface is the interface that the actual SCons utility will present to users. Because it exposes
the Python Build Engine API, SCons users will have direct access to the complete functionality of the Build Engine.
In contrast, a different user interface such as a GUI may choose to only use, and present to the end-user, a subset of
the Build Engine functionality.

5.1. Configuration files
SCons configuration files are simply Python scripts that invoke methods to specify target files to be built, rules for
building the target files, and dependencies. Common build rules are available by default and need not be explicitly
specified in the configuration files.

By default, the SCons utility searches for a file named SConstruct, Sconstruct or sconstruct (in that order)
in the current directory, and reads its configuration from the first file found. A -f command-line option exists to read
a different file name.

5.2. Python syntax
Because SCons configuration files are Python scripts, normal Python syntax can be used to generate or manipulate
lists of targets or dependencies:

 sources = ['aaa.c', 'bbb.c', 'ccc.c']
 env.Make('bar', sources)

Python flow-control can be used to iterate through invocations of build rules:

 objects = ['aaa.o', 'bbb.o', 'ccc.o']
 for obj in objects:
 src = replace(obj, '.o', '.c')
 env.Make(obj, src)

or to handle more complicated conditional invocations:

Subsidiary configuration Files

26

 # only build 'foo' on Linux systems
 if sys.platform == 'linux1':
 env.Make('foo', 'foo.c')

Because SCons configuration files are Python scripts, syntax errors will be caught by the Python parser. Target-building
does not begin until after all configuration files are read, so a syntax error will not cause a build to fail half-way.

5.3. Subsidiary configuration Files
A configuration file can instruct SCons to read up subsidiary configuration files. Subsidiary files are specified explicitly
in a configuration file via the SConscript method. As usual, multiple file names may be specified with white space
separation, or in an array:

 SConscript('other_file')
 SConscript('file1 file2')
 SConscript(['file3', 'file4'])
 SConscript(['file name with white space'])

An explicit sconscript keyword may be used:

 SConscript(sconscript = 'other_file')

Including subsidiary configuration files is recursive: a configuration file included via SConscript may in turn
SConscript other configuration files.

5.4. Variable scoping in subsidiary files
When a subsidiary configuration file is read, it is given its own namespace; it does not have automatic access to
variables from the parent configuration file.

Any variables (not just SCons objects) that are to be shared between configuration files must be explicitly passed in
the SConscript call using the Export method:

 env = Environment()
 debug = Environment(CCFLAGS = '-g')
 installdir = '/usr/bin'
 SConscript('src/SConscript', Export(env=env, debug=debug, installdir=installdir))

Which may be specified explicitly using a keyword argument:

 env = Environment()
 debug = Environment(CCFLAGS = '-g')
 installdir = '/usr/bin'
 SConscript(sconscript = 'src/SConscript',
 export = Export(env=env, debug=debug, installdir=installdir))

Hierarchical builds

27

Explicit variable-passing provides control over exactly what is available to a subsidiary file, and avoids unintended
side effects of changes in one configuration file affecting other far-removed configuration files (a very hard-to-debug
class of build problem).

5.5. Hierarchical builds
The SConscript method is so named because, by convention, subsidiary configuration files in subdirectories are
named SConscript:

 SConscript('src/SConscript')
 SConscript('lib/build_me')

When a subsidiary configuration file is read from a subdirectory, all of that configuration file's targets and build rules
are interpreted relative to that directory (as if SCons had changed its working directory to that subdirectory). This
allows for easy support of hierarchical builds of directory trees for large projects.

5.6. Sharing construction environments
SCons will allow users to share construction environments, as well as other SCons objects and Python
variables, by importing them from a central, shared repository using normal Python syntax:

 from LocalEnvironments import optimized, debug

 optimized.Make('foo', 'foo.c')
 debug.Make('foo-d', 'foo.c')

The expectation is that some local tool-master, integrator or administrator will be responsible for assembling environ-
ments (creating the Builder objects that specify the tools, options, etc.) and make these available for sharing by
all users.

The modules containing shared construction environments (LocalEnvironments in the above example)
can be checked in and controlled with the rest of the source files. This allows a project to track the combinations of
tools and command-line options that work on different platforms, at different times, and with different tool versions,
by using already-familiar revision control tools.

5.7. Help
The SCons utility provides a Help function to allow the writer of a SConstruct file to provide help text that is
specific to the local build tree:

 Help("""
 Type:
 scons . build and test everything
 scons test build the software
 scons src run the tests
 scons web build the web pages
 """)

Debug

28

This help text is displayed in response to the -h command-line option. Calling the Help function more than once
is an error.

5.8. Debug
SCons supports several command-line options for printing extra information with which to debug build problems.

See the -d, -p, -pa, and -pw options in the , below. All of these options make use of call-back functions to printed
by the Build Engine.

6 Other Issues

No build tools is perfect. Here are some SCons issues that do not yet have solutions.

6.1. Interaction with SC-config
The SC-config tool will be used in the SCons installation process to generate an appropriate default construction
environment so that building most software works "out of the box" on the installed platform. The SC-config tool will
find reasonable default compilers (C, C++, Fortran), linkers/loaders, library archive tools, etc. for specification in the
default SCons construction environment.

6.2. Interaction with test infrastructures
SCons can be configured to use SC-test (or some other test tool) to provide controlled, automated testing of software.
The Link method could link a test subdirectory to a build subdirectory:

 Link('test', 'build')
 SConscript('test/SConscript')

Any test cases checked in with the source code will be linked into the test subdirectory and executed. If SCon-
script files and test cases are written with this in mind, then invoking:

 % sccons test

Would run all the automated test cases that depend on any changed software.

6.3. Java dependencies
Java dependencies are difficult for an external dependency-based construction tool to accomodate. Determining Java
class dependencies is more complicated than the simple pattern-matching of C or C++ #include files. From the
point of view of an external build tool, the Java compiler behaves "unpredictably" because it may create or update
multiple output class files and directories as a result of its internal class dependencies.

An obvious SCons implementation would be to have the Scanner object parse output from Java -depend -verbose to
calculate dependencies, but this has the distinct disadvantage of requiring two separate compiler invocations, thereby
slowing down builds.

Limitations of digital signature calculation

30

6.4. Limitations of digital signature calculation
In practice, calculating digital signatures of a file's contents is a more robust mechanism than time stamps for deter-
mining what needs building. However:

1. Developers used to the time stamp model of Make can initially find digital signatures counter-intuitive. The as-
sumption that:

 % touch file.c

will cause a rebuild of file is strong...

2. Abstracting dependency calculation into a single digital signature loses a little information: It is no longer possible
to tell (without laborious additional calculation) which input file dependency caused a rebuild of a given target file.
A feature that could report, "I'm rebuilding file X because it's out-of-date with respect to file Y," would be good,
but an digital-signature implementation of such a feature is non-obvious.

6.5. Remote execution
The ability to use multiple build systems through remote execution of tools would be good. This should be imple-
mentable through the Job class. Construction environments would need modification to specify build systems.

6.6. Conditional builds
The ability to check run-time conditions as suggested on the sc-discuss mailing list ("build X only if: the machine is
idle / the file system has Y megabytes free space") would also be good, but is not part of the current design.

7 Background

Most of the ideas in SCons originate with Cons, a Perl-based software construction utility that has been in use by a small
but growing community since its development by Bob Sidebotham at FORE Systems in 1996. The Cons copyright
was transferred in 2000 from Marconi (who purchased FORE Systems) to the Free Software Foundation. I've been a
principal implementer and maintainer of Cons for several years.

Cons was originally designed to handle complicated software build problems (multiple directories, variant builds)
while keeping the input files simple and maintainable. The general philosophy is that the build tool should ``do the
right thing'' with minimal input from an unsophisticated user, while still providing a rich set of underlying functionality
for more complicated software construction tasks needed by experts.

In 2000, the Software Carpentry sought entries in a contest for a new, Python-based build tool that would provide an
improvement over Make for physical scientists and other non-programmers struggling to use their computers more
effectively. Prior to that, the idea of combining the superior build architecture of Cons with the easier syntax of Python
had come up several times on the cons-discuss mailing list. The Software Carpentry contest provided the right
motivation to spend some actual time working on a design document.

After two rounds of competition, the submitted design, named ScCons, won the competition. Software Carpentry,
however, did not immediately fund implementation of the build tool, instead contracting for additional, more detailed
draft(s) of the design document. This proved to be not as strong motivation as actual coding, and after several months
of inactivity, I essentially resigned from the Software Carpentry effort in early 2001 to start working on the tool
independently.

After half a year of prototyping some of the important infrastructure, I accumulated enough code to take the project
public at SourceForge, renaming it SCons to distinguish it slightly from the version of the design that won the Software
Carpentry contest while still honoring its roots there and in the original Cons utility. And also because it would be
a teensy bit easier to type.

8 Summary

SCons offers a robust and feature-rich design for an SC-build tool. With a Build Engine based on the proven design of
the Cons utility, it offers increased simplification of the user interface for unsophisticated users with the addition of the
"do-the-right-thing" env.Make method, increased flexibility for sophisticated users with the addition of Builder
and Scanner objects, a mechanism to allow tool-masters (and users) to share working construction environments,
and embeddability to provide reliable dependency management in a variety of environments and interfaces.

9 Acknowledgements

I'm grateful to the following people for their influence, knowing or not, on the design of SCons:

Bob Sidebotham
First, as the original author of Cons, Bob did the real heavy lifting of creating the underlying model for depen-
dency management and software construction, as well as implementing it in Perl. During the first years of Cons'
existence, Bob did a skillful job of integrating input and code from the first users, and consequently is a source
of practical wisdom and insight into the problems of real-world software construction. His continuing advice has
been invaluable.

The SCons Development Team
A big round of thanks go to those brave souls who have gotten in on the ground floor: David Abrahams, Charles
Crain, Steven Leblanc. Anthony Roach, and Steven Shaw. Their contributions, through their general knowledge
of software build issues in general Python in particular, have made SCons what it is today.

The Cons Community
The real-world build problems that the users of Cons share on the cons-discuss mailing list have informed much
of the thinking that has gone into the SCons design. In particular, Rajesh Vaidheeswarran, the current maintainer
of Cons, has been a very steady influence. I've also picked up valuable insight from mailing-list participants Johan
Holmberg, Damien Neil, Gary Oberbrunner, Wayne Scott, and Greg Spencer.

Peter Miller
Peter has indirectly influenced two aspects of the SCons design:

Miller's influential paper Recursive Make Considered Harmful was what led me, indirectly, to my involvement
with Cons in the first place. Experimenting with the single-Makefile approach he describes in RMCH led me to
conclude that while it worked as advertised, it was not an extensible scheme. This solidified my frustration with
Make and led me to try Cons, which at its core shares the single-process, universal-DAG model of the "RMCH"
single-Makefile technique.

The testing framework that Miller created for his Aegis change management system changed the way I approach
software development by providing a framework for rigorous, repeatable testing during development. It was my
success at using Aegis for personal projects that led me to begin my involvement with Cons by creating the cons-
test regression suite.

Stuart Stanley
An experienced Python programmer, Stuart provided valuable advice and insight into some of the more useful
Python idioms at my disposal during the original ScCons; design for the Software Carpentry contest.

Gary Holt
I don't know which came first, the first-round Software Carpentry contest entry or the tool itself, but Gary's design
for Make++ showed me that it is possible to marry the strengths of Cons-like dependency management with

34

backwards compatibility for Makefiles. Striving to support both Makefile compatibility and a native Python
interface cleaned up the SCons design immeasurably by factoring out the common elements into the Build Engine.

