
SCons User Guide 0.96.95

Steven Knight

SCons User Guide 0.96.95
by Steven Knight

Revision 0.96.95.D001 (2007/02/12 21:41:50) Edition
Published 2004, 2005, 2006, 2007
Copyright © 2004, 2005, 2006, 2007 Steven Knight

SCons User’s Guide Copyright (c) 2004, 2005, 2006, 2007 Steven Knight

Table of Contents
Preface ... i

SCons Principles ... i
A Caveat About This Guide’s Completeness... i
Acknowledgements .. ii
Contact .. ii

1. Building and Installing SCons..1
Installing Python ..1
Installing SCons From Pre-Built Packages..1

Installing SCons on Red Hat (and Other RPM-based) Linux Systems1
Installing SCons on Debian Linux Systems ..2
Installing SCons on Windows Systems..2

Building and Installing SCons on Any System ..2
Building and Installing Multiple Versions of SCons Side-by-Side3
Installing SCons in Other Locations...3
Building and Installing SCons Without Administrative Privileges.............3

2. Simple Builds ..5
Building Simple C / C++ Programs ..5
Building Object Files ..6
Simple Java Builds..6
Cleaning Up After a Build ..6
The SConstruct File ..7

SConstruct Files Are Python Scripts ..7
SCons Functions Are Order-Independent...8

Making the SCons Output Less Verbose ...8
3. Less Simple Things to Do With Builds ..11

Specifying the Name of the Target (Output) File...11
Compiling Multiple Source Files ...11
Specifying Single Files Vs. Lists of Files ...12
Making Lists of Files Easier to Read..13
Keyword Arguments ...13
Compiling Multiple Programs ...14
Sharing Source Files Between Multiple Programs ..14

4. Building and Linking with Libraries..17
Building Libraries...17

Building Static Libraries Explicitly: the StaticLibrary Builder..............17
Building Shared (DLL) Libraries: the SharedLibrary Builder17

Linking with Libraries ...18
Finding Libraries: the $LIBPATH Construction Variable19

5. Node Objects ...21
Builder Methods Return Lists of Target Nodes ...21
Explicitly Creating File and Directory Nodes ..21
Printing Node File Names..22
Using a Node’s File Name as a String ..23

6. Dependencies ..25
Deciding When a Source File Has Changed: the SourceSignatures Function

25
MD5 Source File Signatures ..25
Source File Time Stamps..26

Deciding When a Target File Has Changed: the TargetSignatures Function26
Build Signatures..26
File Contents..27

Implicit Dependencies: The $CPPPATH Construction Variable27
Caching Implicit Dependencies ...29

The --implicit-deps-changed Option ..29
The --implicit-deps-unchanged Option..29

iii

Ignoring Dependencies: the Ignore Method...30
Explicit Dependencies: the Depends Method...30

7. Construction Environments..33
Multiple Construction Environments ..33
Copying Construction Environments ..34
Fetching Values From a Construction Environment ..35
Expanding Values From a Construction Environment36
Modifying a Construction Environment ..37

Replacing Values in a Construction Environment37
Appending to the End of Values in a Construction Environment38
Appending to the Beginning of Values in a Construction Environment

38
8. Controlling the External Environment Used to Execute Build Commands41

Propagating PATHFrom the External Environment ..41
9. Controlling a Build From the Command Line ..43

Not Having to Specify Command-Line Options Each Time: the SCONSFLAGS
Environment Variable ..43

Getting at Command-Line Targets ..43
Controlling the Default Targets..44

Getting at the List of Default Targets...45
Getting at the List of Build Targets, Regardless of Origin....................................46
Command-Line variable =value Build Options ...47
Controlling Command-Line Build Options ...48
Providing Help for Command-Line Build Options ..49
Reading Build Options From a File ...49
Canned Build Options ...50

True/False Values: the BoolOption Build Option.......................................50
Single Value From a List: the EnumOption Build Option............................51
Multiple Values From a List: the ListOption Build Option......................53
Path Names: the PathOption Build Option ...53
Enabled/Disabled Path Names: the PackageOption Build Option55

Adding Multiple Command-Line Build Options at Once55
10. Providing Build Help: the Help Function ..57
11. Installing Files in Other Directories: the Install Builder...................................59

Installing Multiple Files in a Directory ...59
Installing a File Under a Different Name..60
Installing Multiple Files Under Different Names..60

12. Platform-Independent File System Manipulation...63
Copying Files or Directories: The Copy Factory ..63
Deleting Files or Directories: The Delete Factory ..63
Moving (Renaming) Files or Directories: The Move Factory64
Updating the Modification Time of a File: The Touch Factory............................65
Creating a Directory: The Mkdir Factory..65
Changing File or Directory Permissions: The ChmodFactory65
Executing an action immediately: the Execute Function66

13. Preventing Removal of Targets ..67
Preventing target removal during build: the Precious Function67
Preventing target removal during clean: the NoClean Function.........................67

14. Hierarchical Builds...69
SConscript Files ..69
Path Names Are Relative to the SConscript Directory.......................................69
Top-Level Path Names in Subsidiary SConscript Files70
Absolute Path Names ..70
Sharing Environments (and Other Variables) Between SConscript Files71

Exporting Variables ..71
Importing Variables..72

iv

Returning Values From an SConscript File...72
15. Separating Source and Build Directories...75

Specifying a Build Directory as Part of an SConscript Call75
Why SCons Duplicates Source Files in a Build Directory75
Telling SCons to Not Duplicate Source Files in the Build Directory...................76
The BuildDir Function ...76
Using BuildDir With an SConscript File ...77

16. Variant Builds ..79
17. Writing Your Own Builders ..81

Writing Builders That Execute External Commands ..81
Attaching a Builder to a Construction Environment ..81
Letting SCons Handle The File Suffixes ..82
Builders That Execute Python Functions..82
Builders That Create Actions Using a Generator ...83
Builders That Modify the Target or Source Lists Using an Emitter84

18. Not Writing a Builder: the CommandBuilder ..87
19. Writing Scanners ...89

A Simple Scanner Example...89
20. Building From Code Repositories ...91

The Repository Method ..91
Finding source files in repositories ..91
Finding #include files in repositories ..91

Limitations on #include files in repositories...92
Finding the SConstruct file in repositories ...93
Finding derived files in repositories..93
Guaranteeing local copies of files ..94

21. Multi-Platform Configuration (Autoconf Functionality)......................................97
Configure Contexts ..97
Checking for the Existence of Header Files..97
Checking for the Availability of a Function ...98
Checking for the Availability of a Library ..98
Checking for the Availability of a typedef ..98
Adding Your Own Custom Checks ...99
Not Configuring When Cleaning Targets ...100

22. Caching Built Files ...103
Specifying the Shared Cache Directory...103
Keeping Build Output Consistent ...103
Not Retrieving Files From a Shared Cache...104
Populating a Shared Cache With Already-Built Files ...104

23. Alias Targets...107
24. Java Builds..109

Building Java Class Files: the Java Builder..109
How SCons Handles Java Dependencies..109
Building Java Archive (.jar) Files: the Jar Builder ...110
Building C Header and Stub Files: the JavaH Builder..110
Building RMI Stub and Skeleton Class Files: the RMICBuilder.........................111

25. Troubleshooting ..113
Why is That Target Being Rebuilt? the --debug=explain Option113
What’s in That Construction Environment? the DumpMethod114

A. Construction Variables ...119
B. Builders ..159
C. Tools..169
D. Handling Common Tasks ..175

v

vi

Preface

Thank you for taking the time to read about SCons. SCons is a next-generation soft-
ware construction tool, or make tool--that is, a software utility for building software
(or other files) and keeping built software up-to-date whenever the underlying input
files change.

The most distinctive thing about SCons is that its configuration files are actually
scripts, written in the Python programming language. This is in contrast to most al-
ternative build tools, which typically invent a new language to configure the build.
SCons still has a learning curve, of course, because you have to know what func-
tions to call to set up your build properly, but the underlying syntax used should be
familiar to anyone who has ever looked at a Python script.

Paradoxically, using Python as the configuration file format makes SCons easier for
non-programmers to learn than the cryptic languages of other build tools, which are
usually invented by programmers for other programmers. This is in no small part
due to the consistency and readability that are built in to Python. It just so happens
that making a real, live scripting language the basis for the configuration files makes
it a snap for more accomplished programmers to do more complicated things with
builds, as necessary.

SCons Principles
There are a few overriding principles we try to live up to in designing and imple-
menting SCons:

Correctness

First and foremost, by default, SCons guarantees a correct build even if it means
sacrificing performance a little. We strive to guarantee the build is correct regard-
less of how the software being built is structured, how it may have been written,
or how unusual the tools are that build it.

Performance

Given that the build is correct, we try to make SCons build software as quickly
as possible. In particular, wherever we may have needed to slow down the de-
fault SCons behavior to guarantee a correct build, we also try to make it easy to
speed up SCons through optimization options that let you trade off guaranteed
correctness in all end cases for a speedier build in the usual cases.

Convenience

SCons tries to do as much for you out of the box as reasonable, including detect-
ing the right tools on your system and using them correctly to build the software.

In a nutshell, we try hard to make SCons just "do the right thing" and build software
correctly, with a minimum of hassles.

A Caveat About This Guide’s Completeness
One word of warning as you read through this Guide: Like too much Open Source
software out there, the SCons documentation isn’t always kept up-to-date with the
available features. In other words, there’s a lot that SCons can do that isn’t yet covered
in this User’s Guide. (Come to think of it, that also describes a lot of proprietary
software, doesn’t it?)

Although this User’s Guide isn’t as complete as we’d like it to be, our development
process does emphasize making sure that the SCons man page is kept up-to-date
with new features. So if you’re trying to figure out how to do something that SCons

i

Preface

supports but can’t find enough (or any) information here, it would be worth your
while to look at the man page to see if the information is covered there. And if you
do, maybe you’d even consider contributing a section to the User’s Guide so the next
person looking for that information won’t have to go through the same thing...?

Acknowledgements
SCons would not exist without a lot of help from a lot of people, many of whom may
not even be aware that they helped or served as inspiration. So in no particular order,
and at the risk of leaving out someone:

First and foremost, SCons owes a tremendous debt to Bob Sidebotham, the original
author of the classic Perl-based Cons tool which Bob first released to the world back
around 1996. Bob’s work on Cons classic provided the underlying architecture and
model of specifying a build configuration using a real scripting language. My real-
world experience working on Cons informed many of the design decisions in SCons,
including the improved parallel build support, making Builder objects easily defin-
able by users, and separating the build engine from the wrapping interface.

Greg Wilson was instrumental in getting SCons started as a real project when he
initiated the Software Carpentry design competition in February 2000. Without that
nudge, marrying the advantages of the Cons classic architecture with the readability
of Python might have just stayed no more than a nice idea.

The entire SCons team have been absolutely wonderful to work with, and SCons
would be nowhere near as useful a tool without the energy, enthusiasm and time
people have contributed over the past few years. The "core team" of Chad Austin,
Anthony Roach, Charles Crain, Steve Leblanc, Gary Oberbrunner, Greg Spencer and
Christoph Wiedemann have been great about reviewing my (and other) changes and
catching problems before they get in the code base. Of particular technical note: An-
thony’s outstanding and innovative work on the tasking engine has given SCons a
vastly superior parallel build model; Charles has been the master of the crucial Node
infrastructure; Christoph’s work on the Configure infrastructure has added crucial
Autoconf-like functionality; and Greg has provided excellent support for Microsoft
Visual Studio.

Special thanks to David Snopek for contributing his underlying "Autoscons" code
that formed the basis of Christoph’s work with the Configure functionality. David
was extremely generous in making this code available to SCons, given that he initially
released it under the GPL and SCons is released under a less-restrictive MIT-style
license.

Thanks to Peter Miller for his splendid change management system, Aegis , which
has provided the SCons project with a robust development methodology from day
one, and which showed me how you could integrate incremental regression tests
into a practical development cycle (years before eXtreme Programming arrived on
the scene).

And last, thanks to Guido van Rossum for his elegant scripting language, which is
the basis not only for the SCons implementation, but for the interface itself.

Contact
The best way to contact people involved with SCons, including the author, is through
the SCons mailing lists.

If you want to ask general questions about how to use SCons send email to
users@scons.tigris.org .

If you want to contact the SCons development community directly, send email to
dev@scons.tigris.org .

ii

Preface

If you want to receive announcements about SCons, join the low-volume
announce@scons.tigris.org mailing list.

iii

Preface

iv

Chapter 1. Building and Installing SCons

This chapter will take you through the basic steps of installing SCons on your system,
and building SCons if you don’t have a pre-built package available (or simply pre-
fer the flexibility of building it yourself). Before that, however, this chapter will also
describe the basic steps involved in installing Python on your system, in case that is
necessary. Fortunately, both SCons and Python are very easy to install on almost any
system, and Python already comes installed on many systems.

Installing Python
Because SCons is written in Python, you must obviously have Python installed on
your system to use SCons Before you try to install Python, you should check to see
if Python is already available on your system by typing python at your system’s
command-line prompt. You should see something like the following on a UNIX or
Linux system that has Python installed:

$ python
Python 2.2.2 (#1, Feb 24 2003, 19:13:11)
[GCC 3.2.2 20030222 (Red Hat Linux 3.2.2-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> ^D

And on a Windows system with Python installed:

C:\> python
Python 2.2.2 (#34, Apr 9 2002, 19:34:33) [MSC 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z

The >>> is the input prompt for the Python interpreter. The ^D and ^Z represent the
CTRL-D and CTRL-Z characters that you will need to type to get out of the interpreter
before proceeding to installing SCons.

If Python is not installed on your system, you will see an error message stating some-
thing like "command not found" (on UNIX or Linux) or "’python’ is not recognized
as an internal or external command, operable progam or batch file" (on Windows). In
that case, you need to install Python before you can install SCons.

The standard location for information about downloading and installing Python is
http://www.python.org/download/. See that page for information about how to
download and install Python on your system.

Installing SCons From Pre-Built Packages
SCons comes pre-packaged for installation on a number of systems, including Linux
and Windows systems. You do not need to read this entire section, you should only
need to read the section appropriate to the type of system you’re running on.

Installing SCons on Red Hat (and Other RPM-based) Linux
Systems
SCons comes in RPM (Red Hat Package Manager) format, pre-built and ready to
install on Red Hat Linux, Fedora Core, or any other Linux distribution that uses RPM.
Your distribution may already have an SCons RPM built specifically for it; many do,
including SuSe, Mandrake and Fedora. You can check for the availability of an SCons

1

Chapter 1. Building and Installing SCons

RPM on your distribution’s download servers, or by consulting an RPM search site
like http://www.rpmfind.net/ or http://rpm.pbone.net/.

If your Linux distribution does not already have a specific SCons RPM file, you
can download and install from the generic RPM provided by the SCons project.
This will install the SCons script(s) in /usr/bin , and the SCons library modules in
/usr/lib/scons .

To install from the command line, simply download the appropriate .rpm file, and
then run:

rpm -Uvh scons-0.96-1.noarch.rpm

Or, you can use a graphical RPM package manager like gnorpm . See your package
manager application’s documention for specific instructions about how to use it to
install a downloaded RPM.

Installing SCons on Debian Linux Systems
Debian Linux systems use a different package management format that also makes it
very easy to install SCons.

If your system is connected to the Internet, you can install the latest official Debian
package by running:

apt-get install scons

Installing SCons on Windows Systems
SCons provides a Windows installer that makes installation extremely easy.
Download the scons-0.95.win32.exe file from the SCons download page at
http://www.scons.org/download.html. Then all you need to do is execute the file
(usually by clicking on its icon in Windows Explorer). These will take you through a
small sequence of windows that will install SCons on your system.

Building and Installing SCons on Any System
If a pre-built SCons package is not available for your system, then you can still easily
build and install SCons using the native Python distutils package.

The first step is to download either the scons-0.96.95.tar.gz or
scons-0.96.95.zip , which are available from the SCons download page at
http://www.scons.org/download.html.

Unpack the archive you downloaded, using a utility like tar on Linux or UNIX, or
WinZip on Windows. This will create a directory called scons-0.96.95 , usually in
your local directory. Then change your working directory to that directory and install
SCons by executing the following commands:

cd scons-0.96.95
python setup.py install

This will build SCons, install the scons script in the default system scripts direc-
tory (/usr/local/bin or C:\Python2.2\Scripts), and will install the SCons build
engine in an appropriate stand-alone library directory (/usr/local/lib/scons or

2

Chapter 1. Building and Installing SCons

C:\Python2.2\scons). Because these are system directories, you may need root (on
Linux or UNIX) or Administrator (on Windows) privileges to install SCons like this.

Building and Installing Multiple Versions of SCons Side-by-Side
The SCons setup.py script has some extensions that support easy installation of mul-
tiple versions of SCons in side-by-side locations. This makes it easier to download
and experiment with different versions of SCons before moving your official build
process to a new version, for example.

To install SCons in a version-specific location, add the --version-lib option when
you call setup.py :

python setup.py install --version-lib

This will install the SCons build engine in the /usr/lib/scons-0.96.95 or
C:\Python2.2\scons-0.96.95 directory, for example.

If you use the --version-lib option the first time you install SCons, you do not
need to specify it each time you install a new version. The SCons setup.py script
will detect the version-specific directory name(s) and assume you want to install all
versions in version-specific directories. You can override that assumption in the fu-
ture by explicitly specifying the --standalone-lib option.

Installing SCons in Other Locations
You can install SCons in locations other than the default by specifying the --prefix=
option:

python setup.py install --prefix=/opt/scons

This would install the scons script in /opt/scons/bin and the build engine in
/opt/scons/lib/scons ,

Note that you can specify both the --prefix= and the --version-lib options at
the same type, in which case setup.py will install the build engine in a version-
specific directory relative to the specified prefix. Adding --version-lib to the above
example would install the build engine in /opt/scons/lib/scons-0.96.95 .

Building and Installing SCons Without Administrative Privileges
If you don’t have the right privileges to install SCons in a system location, simply
use the --prefix= option to install it in a location of your choosing. For example, to
install SCons in appropriate locations relative to the user’s $HOMEdirectory, the scons
script in $HOME/bin and the build engine in $HOME/lib/scons , simply type:

$ python setup.py install --prefix=$HOME

You may, of course, specify any other location you prefer, and may use the
--version-lib option if you would like to install version-specific directories
relative to the specified prefix.

Notes
1. http://www.python.org/download/

3

Chapter 1. Building and Installing SCons

2. http://www.rpmfind.net/

3. http://rpm.pbone.net/

4. http://www.scons.org/download.html

5. http://www.scons.org/download.html

4

Chapter 2. Simple Builds

In this chapter, you will see several examples of very simple build configurations
using SCons, which will demonstrate how easy it is to use SCons to build programs
from several different programming languages on different types of systems.

Building Simple C / C++ Programs
Here’s the famous "Hello, World!" program in C:

int
main()
{

printf("Hello, world!\n");
}

And here’s how to build it using SCons. Enter the following into a file named
SConstruct :

Program(’hello.c’)

This minimal configuration file gives SCons two pieces of information: what you
want to build (an executable program), and the input file from which you want it
built (the hello.c file). Program is a builder_method, a Python call that tells SCons
that you want to build an executable program.

That’s it. Now run the scons command to build the program. On a POSIX-compliant
system like Linux or UNIX, you’ll see something like:

% scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cc -o hello.o -c hello.c
cc -o hello hello.o
scons: done building targets.

On a Windows system with the Microsoft Visual C++ compiler, you’ll see something
like:

C:\> scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cl /nologo /c hello.c /Fohello.obj
link /nologo /OUT:hello.exe hello.obj
scons: done building targets.

First, notice that you only need to specify the name of the source file, and that SCons
correctly deduces the names of the object and executable files to be built from the
base of the source file name.

Second, notice that the same input SConstruct file, without any changes, generates
the correct output file names on both systems: hello.o and hello on POSIX systems,
hello.obj and hello.exe on Windows systems. This is a simple example of how
SCons makes it extremely easy to write portable software builds.

5

Chapter 2. Simple Builds

(Note that we won’t provide duplicate side-by-side POSIX and Windows output for
all of the examples in this guide; just keep in mind that, unless otherwise specified,
any of the examples should work equally well on both types of systems.)

Building Object Files
The Program builder method is only one of many builder methods that SCons pro-
vides to build different types of files. Another is the Object builder method, which
tells SCons to build an object file from the specified source file:

Object(’hello.c’)

Now when you run the scons command to build the program, it will build just the
hello.o object file on a POSIX system:

% scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cc -o hello.o -c hello.c
scons: done building targets.

And just the hello.obj object file on a Windows system (with the Microsoft Visual
C++ compiler):

C:\> scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cl /nologo /c hello.c /Fohello.obj
scons: done building targets.

Simple Java Builds
SCons also makes building with Java extremely easy. Unlike the Program and Object
builder methods, however, the Java builder method requires that you specify the
name of a destination directory in which you want the class files placed, followed by
the source directory in which the .java files live:

Java(’classes’, ’src’)

If the src directory contains a single hello.java file, then the output from running
the scons command would look something like this (on a POSIX system):

% scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
javac -d classes -sourcepath src src/hello.java
scons: done building targets.

We’ll cover Java builds in more detail, including building Java archive (.jar) and
other types of file, in Chapter 24.

6

Chapter 2. Simple Builds

Cleaning Up After a Build
When using SCons, it is unnecessary to add special commands or target names to
clean up after a build. Instead, you simply use the -c or --clean option when you
invoke SCons, and SCons removes the appropriate built files. So if we build our ex-
ample above and then invoke scons -c afterwards, the output on POSIX looks like:

% scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cc -o hello.o -c hello.c
cc -o hello hello.o
scons: done building targets.
% scons -c
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Cleaning targets ...
Removed hello.o
Removed hello
scons: done cleaning targets.

And the output on Windows looks like:

C:\> scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cl /nologo /c hello.c /Fohello.obj
link /nologo /OUT:hello.exe hello.obj
scons: done building targets.
C:\> scons -c
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Cleaning targets ...
Removed hello.obj
Removed hello.exe
scons: done cleaning targets.

Notice that SCons changes its output to tell you that it is Cleaning targets ... and
done cleaning targets.

The SConstruct File
If you’re used to build systems like Make you’ve already figured out that the
SConstruct file is the SCons equivalent of a Makefile . That is, the SConstruct file
is the input file that SCons reads to control the build.

SConstruct Files Are Python Scripts
There is, however, an important difference between an SConstruct file and
a Makefile : the SConstruct file is actually a Python script. If you’re not
already familiar with Python, don’t worry. This User’s Guide will introduce you
step-by-step to the relatively small amount of Python you’ll need to know to be able
to use SCons effectively. And Python is very easy to learn.

One aspect of using Python as the scripting language is that you can put comments
in your SConstruct file using Python’s commenting convention; that is, everything
between a ’#’ and the end of the line will be ignored:

7

Chapter 2. Simple Builds

Arrange to build the "hello" program.
Program(’hello.c’) # "hello.c" is the source file.

You’ll see throughout the remainder of this Guide that being able to use the power of
a real scripting language can greatly simplify the solutions to complex requirements
of real-world builds.

SCons Functions Are Order-Independent
One important way in which the SConstruct file is not exactly like a normal Python
script, and is more like a Makefile , is that the order in which the SCons functions
are called in the SConstruct file does not affect the order in which SCons actually
builds the programs and object files you want it to build.1 In other words, when you
call the Program builder (or any other builder method), you’re not telling SCons to
build the program at the instant the builder method is called. Instead, you’re telling
SCons to build the program that you want, for example, a program built from a file
named hello.c , and it’s up to SCons to build that program (and any other files)
whenever it’s necessary. (We’ll learn more about how SCons decides when building
or rebuilding a file is necessary in Chapter 6, below.)

SCons reflects this distinction between calling a builder method like Program > and actu-
ally building the program by printing the status messages that indicate when it’s "just
reading" the SConstruct file, and when it’s actually building the target files. This is
to make it clear when SCons is executing the Python statements that make up the
SConstruct file, and when SCons is actually executing the commands or other ac-
tions to build the necessary files.

Let’s clarify this with an example. Python has a print statement that prints a string of
characters to the screen. If we put print statements around our calls to the Program
builder method:

print "Calling Program(’hello.c’)"
Program(’hello.c’)
print "Calling Program(’goodbye.c’)"
Program(’goodbye.c’)
print "Finished calling Program()"

Then when we execute SCons, we see the output from the print statements in be-
tween the messages about reading the SConscript files, indicating that that is when
the Python statements are being executed:

% scons
scons: Reading SConscript files ...
Calling Program(’hello.c’)
Calling Program(’goodbye.c’)
Finished calling Program()
scons: done reading SConscript files.
scons: Building targets ...
cc -o goodbye.o -c goodbye.c
cc -o goodbye goodbye.o
cc -o hello.o -c hello.c
cc -o hello hello.o
scons: done building targets.

Notice also that SCons built the goodbye program first, even though the "reading
SConscript " output shows that we called Program(’hello.c’) first in the
SConstruct file.

8

Chapter 2. Simple Builds

Making the SCons Output Less Verbose
You’ve already seen how SCons prints some messages about what it’s doing, sur-
rounding the actual commands used to build the software:

C:\> scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cl /nologo /c hello.c /Fohello.obj
link /nologo /OUT:hello.exe hello.obj
scons: done building targets.

These messages emphasize the order in which SCons does its work: all of the config-
uration files (generically referred to as SConscript files) are read and executed first,
and only then are the target files built. Among other benefits, these messages help
to distinguish between errors that occur while the configuration files are read, and
errors that occur while targets are being built.

One drawback, of course, is that these messages clutter the output. Fortunately,
they’re easily disabled by using the -Q option when invoking SCons:

C:\> scons -Q
cl /nologo /c hello.c /Fohello.obj
link /nologo /OUT:hello.exe hello.obj

Because we want this User’s Guide to focus on what SCons is actually doing, we’re
going use the -Q option to remove these messages from the output of all the remain-
ing examples in this Guide.

Notes
1. In programming parlance, the SConstruct file is declarative, meaning you tell

SCons what you want done and let it figure out the order in which to do it,
rather than strictly imperative, where you specify explicitly the order in which
to do things.

9

Chapter 2. Simple Builds

10

Chapter 3. Less Simple Things to Do With Builds

In this chapter, you will see several examples of very simple build configurations
using SCons, which will demonstrate how easy it is to use SCons to build programs
from several different programming languages on different types of systems.

Specifying the Name of the Target (Output) File
You’ve seen that when you call the Program builder method, it builds the resulting
program with the same base name as the source file. That is, the following call to
build an executable program from the hello.c source file will build an executable
program named hello on POSIX systems, and an executable program named
hello.exe on Windows systems:

Program(’hello.c’)

If you want to build a program with a different name than the base of the source file
name, you simply put the target file name to the left of the source file name:

Program(’new_hello’, ’hello.c’)

(SCons requires the target file name first, followed by the source file name, so that
the order mimics that of an assignment statement in most programming languages,
including Python: "program = source files" .)

Now SCons will build an executable program named new_hello when run on a
POSIX system:

% scons -Q
cc -o hello.o -c hello.c
cc -o new_hello hello.o

And SCons will build an executable program named new_hello.exe when run on a
Windows system:

C:\> scons -Q
cl /nologo /c hello.c /Fohello.obj
link /nologo /OUT:new_hello.exe hello.obj

Compiling Multiple Source Files
You’ve just seen how to configure SCons to compile a program from a single source
file. It’s more common, of course, that you’ll need to build a program from many
input source files, not just one. To do this, you need to put the source files in a Python
list (enclosed in square brackets), like so:

Program([’main.c’, ’file1.c’, ’file2.c’])

A build of the above example would look like:

% scons -Q
cc -o file1.o -c file1.c
cc -o file2.o -c file2.c
cc -o main.o -c main.c
cc -o main main.o file1.o file2.o

11

Chapter 3. Less Simple Things to Do With Builds

Notice that SCons deduces the output program name from the first source file speci-
fied in the list--that is, because the first source file was prog.c , SCons will name the
resulting program prog (or prog.exe on a Windows system). If you want to specify
a different program name, then (as we’ve seen in the previous section) you slide the
list of source files over to the right to make room for the output program file name.
(SCons puts the output file name to the left of the source file names so that the order
mimics that of an assignment statement: "program = source files".) This makes our
example:

Program(’program’, [’main.c’, ’file1.c’, ’file2.c’])

On Linux, a build of this example would look like:

% scons -Q
cc -o file1.o -c file1.c
cc -o file2.o -c file2.c
cc -o main.o -c main.c
cc -o program main.o file1.o file2.o

Or on Windows:

C:\> scons -Q
cl /nologo /c file1.c /Fofile1.obj
cl /nologo /c file2.c /Fofile2.obj
cl /nologo /c main.c /Fomain.obj
link /nologo /OUT:program.exe main.obj file1.obj file2.obj

Specifying Single Files Vs. Lists of Files
We’ve now shown you two ways to specify the source for a program, one with a list
of files:

Program(’hello’, [’file1.c’, ’file2.c’])

And one with a single file:

Program(’hello’, ’hello.c’)

You could actually put a single file name in a list, too, which you might prefer just
for the sake of consistency:

Program(’hello’, [’hello.c’])

SCons functions will accept a single file name in either form. In fact, internally, SCons
treats all input as lists of files, but allows you to omit the square brackets to cut down
a little on the typing when there’s only a single file name.

Important: Although SCons functions are forgiving about whether or not you use a string
vs. a list for a single file name, Python itself is more strict about treating lists and strings
differently. So where SCons allows either a string or list:

The following two calls both work correctly:
Program(’program1’, ’program1.c’)
Program(’program2’, [’program2.c’])

12

Chapter 3. Less Simple Things to Do With Builds

Trying to do "Python things" that mix strings and lists will cause errors or lead to incorrect
results:

common_sources = [’file1.c’, ’file2.c’]

THE FOLLOWING IS INCORRECT AND GENERATES A PYTHON ERROR
BECAUSE IT TRIES TO ADD A STRING TO A LIST:
Program(’program1’, common_sources + ’program1.c’)

The following works correctly, because it’s adding two
lists together to make another list.
Program(’program2’, common_sources + [’program2.c’])

Making Lists of Files Easier to Read
One drawback to the use of a Python list for source files is that each file name must be
enclosed in quotes (either single quotes or double quotes). This can get cumbersome
and difficult to read when the list of file names is long. Fortunately, SCons and Python
provide a number of ways to make sure that the SConstruct file stays easy to read.

To make long lists of file names easier to deal with, SCons provides a Split function
that takes a quoted list of file names, with the names separated by spaces or other
white-space characters, and turns it into a list of separate file names. Using the Split
function turns the previous example into:

Program(’program’, Split(’main.c file1.c file2.c’))

(If you’re already familiar with Python, you’ll have realized that this is similar
to the split() method in the Python standard string module. Unlike the
string.split() method, however, the Split function does not require a string as
input and will wrap up a single non-string object in a list, or return its argument
untouched if it’s already a list. This comes in handy as a way to make sure arbitrary
values can be passed to SCons functions without having to check the type of the
variable by hand.)

Putting the call to the Split function inside the Program call can also be a little un-
wieldy. A more readable alternative is to assign the output from the Split call to a
variable name, and then use the variable when calling the Program function:

list = Split(’main.c file1.c file2.c’)
Program(’program’, list)

Lastly, the Split function doesn’t care how much white space separates the file
names in the quoted string. This allows you to create lists of file names that span
multiple lines, which often makes for easier editing:

list = Split("""main.c
file1.c
file2.c""")

Program(’program’, list)

(Note in this example that we used the Python "triple-quote" syntax, which allows
a string to contain multiple lines. The three quotes can be either single or double
quotes.)

13

Chapter 3. Less Simple Things to Do With Builds

Keyword Arguments
SCons also allows you to identify the output file and input source files using Python
keyword arguments. The output file is known as the target, and the source file(s) are
known (logically enough) as the source. The Python syntax for this is:

list = Split(’main.c file1.c file2.c’)
Program(target = ’program’, source = list)

Because the keywords explicitly identify what each argument is, you can actually
reverse the order if you prefer:

list = Split(’main.c file1.c file2.c’)
Program(source = list, target = ’program’)

Whether or not you choose to use keyword arguments to identify the target and
source files, and the order in which you specify them when using keywords, are
purely personal choices; SCons functions the same regardless.

Compiling Multiple Programs
In order to compile multiple programs within the same SConstruct file, simply call
the Program method multiple times, once for each program you need to build:

Program(’foo.c’)
Program(’bar’, [’bar1.c’, ’bar2.c’])

SCons would then build the programs as follows:

% scons -Q
cc -o bar1.o -c bar1.c
cc -o bar2.o -c bar2.c
cc -o bar bar1.o bar2.o
cc -o foo.o -c foo.c
cc -o foo foo.o

Notice that SCons does not necessarily build the programs in the same order in which
you specify them in the SConstruct file. SCons does, however, recognize that the
individual object files must be built before the resulting program can be built. We’ll
discuss this in greater detail in the "Dependencies" section, below.

Sharing Source Files Between Multiple Programs
It’s common to re-use code by sharing source files between multiple programs. One
way to do this is to create a library from the common source files, which can then be
linked into resulting programs. (Creating libraries is discussed in Chapter 4, below.)

A more straightforward, but perhaps less convenient, way to share source files be-
tween multiple programs is simply to include the common files in the lists of source
files for each program:

Program(Split(’foo.c common1.c common2.c’))
Program(’bar’, Split(’bar1.c bar2.c common1.c common2.c’))

14

Chapter 3. Less Simple Things to Do With Builds

SCons recognizes that the object files for the common1.c and common2.c source files
each only need to be built once, even though the resulting object files are each linked
in to both of the resulting executable programs:

% scons -Q
cc -o bar1.o -c bar1.c
cc -o bar2.o -c bar2.c
cc -o common1.o -c common1.c
cc -o common2.o -c common2.c
cc -o bar bar1.o bar2.o common1.o common2.o
cc -o foo.o -c foo.c
cc -o foo foo.o common1.o common2.o

If two or more programs share a lot of common source files, repeating the common
files in the list for each program can be a maintenance problem when you need to
change the list of common files. You can simplify this by creating a separate Python
list to hold the common file names, and concatenating it with other lists using the
Python + operator:

common = [’common1.c’, ’common2.c’]
foo_files = [’foo.c’] + common
bar_files = [’bar1.c’, ’bar2.c’] + common
Program(’foo’, foo_files)
Program(’bar’, bar_files)

This is functionally equivalent to the previous example.

15

Chapter 3. Less Simple Things to Do With Builds

16

Chapter 4. Building and Linking with Libraries

It’s often useful to organize large software projects by collecting parts of the software
into one or more libraries. SCons makes it easy to create libraries and to use them in
the programs.

Building Libraries
You build your own libraries by specifying Library instead of Program :

Library(’foo’, [’f1.c’, ’f2.c’, ’f3.c’])

SCons uses the appropriate library prefix and suffix for your system. So on POSIX or
Linux systems, the above example would build as follows (although ranlib may not
be called on all systems):

% scons -Q
cc -o f1.o -c f1.c
cc -o f2.o -c f2.c
cc -o f3.o -c f3.c
ar rc libfoo.a f1.o f2.o f3.o
ranlib libfoo.a

On a Windows system, a build of the above example would look like:

C:\> scons -Q
cl /nologo /c f1.c /Fof1.obj
cl /nologo /c f2.c /Fof2.obj
cl /nologo /c f3.c /Fof3.obj
lib /nologo /OUT:foo.lib f1.obj f2.obj f3.obj

The rules for the target name of the library are similar to those for programs: if you
don’t explicitly specify a target library name, SCons will deduce one from the name
of the first source file specified, and SCons will add an appropriate file prefix and
suffix if you leave them off.

Building Static Libraries Explicitly: the StaticLibrary Builder
The Library function builds a traditional static library. If you want to be explicit
about the type of library being built, you can use the synonym StaticLibrary func-
tion instead of Library :

StaticLibrary(’foo’, [’f1.c’, ’f2.c’, ’f3.c’])

There is no functional difference between the StaticLibrary and Library functions.

Building Shared (DLL) Libraries: the SharedLibrary Builder
If you want to build a shared library (on POSIX systems) or a DLL file (on Windows
systems), you use the SharedLibrary function:

SharedLibrary(’foo’, [’f1.c’, ’f2.c’, ’f3.c’])

The output on POSIX:

17

Chapter 4. Building and Linking with Libraries

% scons -Q
cc -o f1.os -c f1.c
cc -o f2.os -c f2.c
cc -o f3.os -c f3.c
cc -o libfoo.so -shared f1.os f2.os f3.os

And the output on Windows:

C:\> scons -Q
cl /nologo /c f1.c /Fof1.obj
cl /nologo /c f2.c /Fof2.obj
cl /nologo /c f3.c /Fof3.obj
link /nologo /dll /out:foo.dll /implib:foo.lib f1.obj f2.obj f3.obj
RegServerFunc(target, source, env)

Notice again that SCons takes care of building the output file correctly, adding the
-shared option for a POSIX compilation, and the /dll option on Windows.

Linking with Libraries
Usually, you build a library because you want to link it with one or more programs.
You link libraries with a program by specifying the libraries in the $LIBS construction
variable, and by specifying the directory in which the library will be found in the
$LIBPATH construction variable:

Library(’foo’, [’f1.c’, ’f2.c’, ’f3.c’])
Program(’prog.c’, LIBS=[’foo’, ’bar’], LIBPATH=’.’)

Notice, of course, that you don’t need to specify a library prefix (like lib) or suffix
(like .a or .lib). SCons uses the correct prefix or suffix for the current system.

On a POSIX or Linux system, a build of the above example would look like:

% scons -Q
cc -o f1.o -c f1.c
cc -o f2.o -c f2.c
cc -o f3.o -c f3.c
ar rc libfoo.a f1.o f2.o f3.o
ranlib libfoo.a
cc -o prog.o -c prog.c
cc -o prog prog.o -L. -lfoo -lbar

On a Windows system, a build of the above example would look like:

C:\> scons -Q
cl /nologo /c f1.c /Fof1.obj
cl /nologo /c f2.c /Fof2.obj
cl /nologo /c f3.c /Fof3.obj
lib /nologo /OUT:foo.lib f1.obj f2.obj f3.obj
cl /nologo /c prog.c /Foprog.obj
link /nologo /OUT:prog.exe /LIBPATH:. foo.lib bar.lib prog.obj

As usual, notice that SCons has taken care of constructing the correct command lines
to link with the specified library on each system.

Note also that, if you only have a single library to link with, you can specify the
library name in single string, instead of a Python list, so that:

18

Chapter 4. Building and Linking with Libraries

Program(’prog.c’, LIBS=’foo’, LIBPATH=’.’)

is equivalent to:

Program(’prog.c’, LIBS=[’foo’], LIBPATH=’.’)

This is similar to the way that SCons handles either a string or a list to specify a single
source file.

Finding Libraries: the $LIBPATH Construction Variable
By default, the linker will only look in certain system-defined directories for libraries.
SCons knows how to look for libraries in directories that you specify with the $LIB-
PATH construction variable. $LIBPATH consists of a list of directory names, like so:

Program(’prog.c’, LIBS = ’m’,
LIBPATH = [’/usr/lib’, ’/usr/local/lib’])

Using a Python list is preferred because it’s portable across systems. Alternatively,
you could put all of the directory names in a single string, separated by the system-
specific path separator character: a colon on POSIX systems:

LIBPATH = ’/usr/lib:/usr/local/lib’

or a semi-colon on Windows systems:

LIBPATH = ’C:\\lib;D:\\lib’

(Note that Python requires that the backslash separators in a Windows path name be
escaped within strings.)

When the linker is executed, SCons will create appropriate flags so that the linker will
look for libraries in the same directories as SCons. So on a POSIX or Linux system, a
build of the above example would look like:

% scons -Q
cc -o prog.o -c prog.c
cc -o prog prog.o -L/usr/lib -L/usr/local/lib -lm

On a Windows system, a build of the above example would look like:

C:\> scons -Q
cl /nologo /c prog.c /Foprog.obj
link /nologo /OUT:prog.exe /LIBPATH:\usr\lib /LIBPATH:\usr\local\lib m.lib prog.obj

Note again that SCons has taken care of the system-specific details of creating the
right command-line options.

19

Chapter 4. Building and Linking with Libraries

20

Chapter 5. Node Objects

Internally, SCons represents all of the files and directories it knows about as Nodes .
These internal objects (not object files) can be used in a variety of ways to make your
SConscript files portable and easy to read.

Builder Methods Return Lists of Target Nodes
All builder methods return a list of Node objects that identify the target file or files
that will be built. These returned Nodes can be passed as source files to other builder
methods,

For example, suppose that we want to build the two object files that make up a pro-
gram with different options. This would mean calling the Object builder once for
each object file, specifying the desired options:

Object(’hello.c’, CCFLAGS=’-DHELLO’)
Object(’goodbye.c’, CCFLAGS=’-DGOODBYE’)

One way to combine these object files into the resulting program would be to call the
Program builder with the names of the object files listed as sources:

Object(’hello.c’, CCFLAGS=’-DHELLO’)
Object(’goodbye.c’, CCFLAGS=’-DGOODBYE’)
Program([’hello.o’, ’goodbye.o’])

The problem with listing the names as strings is that our SConstruct file is no longer
portable across operating systems. It won’t, for example, work on Windows because
the object files there would be named hello.obj and goodbye.obj , not hello.o and
goodbye.o .

A better solution is to assign the lists of targets returned by the calls to the Object
builder to variables, which we can then concatenate in our call to the Program
builder:

hello_list = Object(’hello.c’, CCFLAGS=’-DHELLO’)
goodbye_list = Object(’goodbye.c’, CCFLAGS=’-DGOODBYE’)
Program(hello_list + goodbye_list)

This makes our SConstruct file portable again, the build output on Linux looking
like:

% scons -Q
cc -o goodbye.o -c -DGOODBYE goodbye.c
cc -o hello.o -c -DHELLO hello.c
cc -o hello hello.o goodbye.o

And on Windows:

C:\> scons -Q
cl -DGOODBYE /c goodbye.c /Fogoodbye.obj
cl -DHELLO /c hello.c /Fohello.obj
link /nologo /OUT:hello.exe hello.obj goodbye.obj

We’ll see examples of using the list of nodes returned by builder methods throughout
the rest of this guide.

21

Chapter 5. Node Objects

Explicitly Creating File and Directory Nodes
It’s worth mentioning here that SCons maintains a clear distinction between Nodes
that represent files and Nodes that represent directories. SCons supports File and
Dir functions that, repectively, return a file or directory Node:

hello_c = File(’hello.c’)
Program(hello_c)

classes = Dir(’classes’)
Java(classes, ’src’)

Normally, you don’t need to call File or Dir directly, because calling a builder
method automatically treats strings as the names of files or directories, and
translates them into the Node objects for you. The File and Dir functions can come
in handy in situations where you need to explicitly instruct SCons about the type of
Node being passed to a builder or other function, or unambiguously refer to a
specific file in a directory tree.

There are also times when you may need to refer to an entry in a file system without
knowing in advance whether it’s a file or a directory. For those situations, SCons also
supports an Entry function, which returns a Node that can represent either a file or
a directory.

xyzzy = Entry(’xyzzy’)

The returned xyzzy Node will be turned into a file or directory Node the first time it
is used by a builder method or other function that requires one vs. the other.

Printing Node File Names
One of the most common things you can do with a Node is use it to print the file
name that the node represents. For example, the following SConstruct file:

hello_c = File(’hello.c’)
Program(hello_c)

classes = Dir(’classes’)
Java(classes, ’src’)

object_list = Object(’hello.c’)
program_list = Program(object_list)
print "The object file is:", object_list[0]
print "The program file is:", program_list[0]

Would print the following file names on a POSIX system:

% scons -Q
The object file is: hello.o
The program file is: hello
cc -o hello.o -c hello.c
cc -o hello hello.o

And the following file names on a Windows system:

C:\> scons -Q
The object file is: hello.obj
The program file is: hello.exe
cl /nologo /c hello.c /Fohello.obj

22

Chapter 5. Node Objects

link /nologo /OUT:hello.exe hello.obj

Using a Node’s File Name as a String
Printing a Node’s name as described in the previous section works because the string
representation of a Node is the name of the file. If you want to do something other
than print the name of the file, you can fetch it by using the builtin Python str
function. For example, if you want to use the Python os.path.exists to figure out
whether a file exists while the SConstruct file is being read and executed, you can
fetch the string as follows:

import os.path
program_list = Program(’hello.c’)
program_name = str(program_list[0])
if not os.path.exists(program_name):

print program_name, "does not exist!"

Which executes as follows on a POSIX system:

% scons -Q
hello does not exist!
cc -o hello.o -c hello.c
cc -o hello hello.o

23

Chapter 5. Node Objects

24

Chapter 6. Dependencies

So far we’ve seen how SCons handles one-time builds. But the real point of a build
tool like SCons is to rebuild only the necessary things when source files change--or,
put another way, SCons should not waste time rebuilding things that have already
been built. You can see this at work simply be re-invoking SCons after building our
simple hello example:

% scons -Q
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q
scons: ‘.’ is up to date.

The second time it is executed, SCons realizes that the hello program is up-to-date
with respect to the current hello.c source file, and avoids rebuilding it. You can see
this more clearly by naming the hello program explicitly on the command line:

% scons -Q hello
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q hello
scons: ‘hello’ is up to date.

Note that SCons reports "...is up to date" only for target files named explicitly
on the command line, to avoid cluttering the output.

Deciding When a Source File Has Changed: the SourceSignatures
Function

The other side of avoiding unnecessary rebuilds is the fundamental build tool behav-
ior of rebuilding things when a source file changes, so that the built software is up to
date. SCons keeps track of this through a signature for each source file, and allows
you to configure whether you want to use the source file contents or the modification
time (timestamp) as the signature.

MD5 Source File Signatures
By default, SCons keeps track of whether a source file has changed based on the file’s
contents, not the modification time. This means that you may be surprised by the
default SCons behavior if you are used to the Make convention of forcing a rebuild by
updating the file’s modification time (using the touch command, for example):

% scons -Q hello
cc -o hello.o -c hello.c
cc -o hello hello.o
% touch hello.c
% scons -Q hello
scons: ‘hello’ is up to date.

Even though the file’s modification time has changed, SCons realizes that the contents
of the hello.c file have not changed, and therefore that the hello program need not
be rebuilt. This avoids unnecessary rebuilds when, for example, someone rewrites
the contents of a file without making a change. But if the contents of the file really do
change, then SCons detects the change and rebuilds the program as required:

% scons -Q hello
cc -o hello.o -c hello.c

25

Chapter 6. Dependencies

cc -o hello hello.o
% edit hello.c

[CHANGE THE CONTENTS OF hello.c]
% scons -Q hello
cc -o hello.o -c hello.c
cc -o hello hello.o

Note that you can, if you wish, specify this default behavior (MD5 signatures) explic-
itly using the SourceSignatures function as follows:

Program(’hello.c’)
SourceSignatures(’MD5’)

Source File Time Stamps
If you prefer, you can configure SCons to use the modification time of source files,
not the file contents, when deciding if something needs to be rebuilt. To do this, call
the SourceSignatures function as follows:

Program(’hello.c’)
SourceSignatures(’timestamp’)

This makes SCons act like Make when a file’s modification time is updated (using the
touch command, for example):

% scons -Q hello
cc -o hello.o -c hello.c
cc -o hello hello.o
% touch hello.c
% scons -Q hello
cc -o hello.o -c hello.c
cc -o hello hello.o

Deciding When a Target File Has Changed: the TargetSignatures
Function

As you’ve just seen, SCons uses signatures to decide whether a target file is up to date
or must be rebuilt. When a target file depends on another target file, SCons allows
you to configure separately how the signatures of "intermediate" target files are used
when deciding if a dependent target file must be rebuilt.

Build Signatures
Modifying a source file will cause not only its direct target file to be rebuilt, but also
the target file(s) that depend on that direct target file. In our example, changing the
contents of the hello.c file causes the hello.o file to be rebuilt, which in turn causes
the hello program to be rebuilt:

% scons -Q hello
cc -o hello.o -c hello.c
cc -o hello hello.o
% edit hello.c

[CHANGE THE CONTENTS OF hello.c]
% scons -Q hello

26

Chapter 6. Dependencies

cc -o hello.o -c hello.c
cc -o hello hello.o

What’s not obvious, though, is that SCons internally handles the signature of the
target file(s) (hello.o in the above example) differently from the signature of the
source file (hello.c). By default, SCons tracks whether a target file must be rebuilt by
using a build signature that consists of the combined signatures of all the files that
go into making the target file. This is efficient because the accumulated signatures
actually give SCons all of the information it needs to decide if the target file is out of
date.

If you wish, you can specify this default behavior (build signatures) explicitly using
the TargetSignatures function:

Program(’hello.c’)
TargetSignatures(’build’)

File Contents
Sometimes a source file can be changed in such a way that the contents of the rebuilt
target file(s) will be exactly the same as the last time the file was built. If so, then
any other target files that depend on such a built-but-not-changed target file actually
need not be rebuilt. You can make SCons realize that it does not need to rebuild a de-
pendent target file in this situation using the TargetSignatures function as follows:

Program(’hello.c’)
TargetSignatures(’content’)

So if, for example, a user were to only change a comment in a C file, then the rebuilt
hello.o file would be exactly the same as the one previously built (assuming the
compiler doesn’t put any build-specific information in the object file). SCons would
then realize that it would not need to rebuild the hello program as follows:

% scons -Q hello
cc -o hello.o -c hello.c
cc -o hello hello.o
% edit hello.c

[CHANGE A COMMENT IN hello.c]
% scons -Q hello
cc -o hello.o -c hello.c
scons: ‘hello’ is up to date.

In essence, SCons has "short-circuited" any dependent builds when it realizes that
a target file has been rebuilt to exactly the same file as the last build. So config-
ured, SCons does take some extra processing time to scan the contents of the target
(hello.o) file, but this may save time if the rebuild that was avoided would have
been very time-consuming and expensive.

Implicit Dependencies: The $CPPPATH Construction Variable
Now suppose that our "Hello, World!" program actually has a #include line to in-
clude the hello.h file in the compilation:

#include <hello.h >
int

27

Chapter 6. Dependencies

main()
{

printf("Hello, %s!\n", string);
}

And, for completeness, the hello.h file looks like this:

#define string "world"

In this case, we want SCons to recognize that, if the contents of the hello.h file
change, the hello program must be recompiled. To do this, we need to modify the
SConstruct file like so:

Program(’hello.c’, CPPPATH = ’.’)

The $CPPPATH value tells SCons to look in the current directory (’.’) for any files
included by C source files (.c or .h files). With this assignment in the SConstruct
file:

% scons -Q hello
cc -o hello.o -c -I. hello.c
cc -o hello hello.o
% scons -Q hello
scons: ‘hello’ is up to date.
% edit hello.h

[CHANGE THE CONTENTS OF hello.h]
% scons -Q hello
cc -o hello.o -c -I. hello.c
cc -o hello hello.o

First, notice that SCons added the -I. argument from the $CPPPATH variable so that
the compilation would find the hello.h file in the local directory.

Second, realize that SCons knows that the hello program must be rebuilt because it
scans the contents of the hello.c file for the #include lines that indicate another file
is being included in the compilation. SCons records these as implicit dependencies of
the target file, Consequently, when the hello.h file changes, SCons realizes that the
hello.c file includes it, and rebuilds the resulting hello program that depends on
both the hello.c and hello.h files.

Like the $LIBPATH variable, the $CPPPATH variable may be a list of directories, or a
string separated by the system-specific path separate character (’:’ on POSIX/Linux,
’;’ on Windows). Either way, SCons creates the right command-line options so that
the following example:

Program(’hello.c’, CPPPATH = [’include’, ’/home/project/inc’])

Will look like this on POSIX or Linux:

% scons -Q hello
cc -o hello.o -c -Iinclude -I/home/project/inc hello.c
cc -o hello hello.o

And like this on Windows:

C:\> scons -Q hello.exe
cl /nologo /Iinclude /I\home\project\inc /c hello.c /Fohello.obj
link /nologo /OUT:hello.exe hello.obj

28

Chapter 6. Dependencies

Caching Implicit Dependencies
Scanning each file for #include lines does take some extra processing time. When
you’re doing a full build of a large system, the scanning time is usually a very small
percentage of the overall time spent on the build. You’re most likely to notice the
scanning time, however, when you rebuild all or part of a large system: SCons will
likely take some extra time to "think about" what must be built before it issues the
first build command (or decides that everything is up to date and nothing must be
rebuilt).

In practice, having SCons scan files saves time relative to the amount of potential
time lost to tracking down subtle problems introduced by incorrect dependencies.
Nevertheless, the "waiting time" while SCons scans files can annoy individual de-
velopers waiting for their builds to finish. Consequently, SCons lets you cache the
implicit dependencies that its scanners find, for use by later builds. You can do this
by specifying the --implicit-cache option on the command line:

% scons -Q --implicit-cache hello
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q hello
scons: ‘hello’ is up to date.

If you don’t want to specify --implicit-cache on the command line each time, you
can make it the default behavior for your build by setting the implicit_cache option
in an SConscript file:

SetOption(’implicit_cache’, 1)

The --implicit-deps-changed Option
When using cached implicit dependencies, sometimes you want to "start fresh" and
have SCons re-scan the files for which it previously cached the dependencies. For
example, if you have recently installed a new version of external code that you use for
compilation, the external header files will have changed and the previously-cached
implicit dependencies will be out of date. You can update them by running SCons
with the --implicit-deps-changed option:

% scons -Q --implicit-deps-changed hello
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q hello
scons: ‘hello’ is up to date.

In this case, SCons will re-scan all of the implicit dependencies and cache updated
copies of the information.

The --implicit-deps-unchanged Option
By default when caching dependencies, SCons notices when a file has been modified
and re-scans the file for any updated implicit dependency information. Sometimes,
however, you may want to force SCons to use the cached implicit dependencies, even
if the source files changed. This can speed up a build for example, when you have
changed your source files but know that you haven’t changed any #include lines. In
this case, you can use the --implicit-deps-unchanged option:

% scons -Q --implicit-deps-unchanged hello
cc -o hello.o -c hello.c

29

Chapter 6. Dependencies

cc -o hello hello.o
% scons -Q hello
scons: ‘hello’ is up to date.

In this case, SCons will assume that the cached implicit dependencies are correct and
will not bother to re-scan changed files. For typical builds after small, incremental
changes to source files, the savings may not be very big, but sometimes every bit of
improved performance counts.

Ignoring Dependencies: the Ignore Method
Sometimes it makes sense to not rebuild a program, even if a dependency file
changes. In this case, you would tell SCons specifically to ignore a dependency as
follows:

hello = Program(’hello.c’)
Ignore(hello, ’hello.h’)

% scons -Q hello
cc -c -o hello.o hello.c
cc -o hello hello.o
% scons -Q hello
scons: ‘hello’ is up to date.
% edit hello.h

[CHANGE THE CONTENTS OF hello.h]
% scons -Q hello
scons: ‘hello’ is up to date.

Now, the above example is a little contrived, because it’s hard to imagine a real-
world situation where you wouldn’t to rebuild hello if the hello.h file changed.
A more realistic example might be if the hello program is being built in a directory
that is shared between multiple systems that have different copies of the stdio.h
include file. In that case, SCons would notice the differences between the different
systems’ copies of stdio.h and would rebuild hello each time you change systems.
You could avoid these rebuilds as follows:

hello = Program(’hello.c’)
Ignore(hello, ’/usr/include/stdio.h’)

Explicit Dependencies: the Depends Method
On the other hand, sometimes a file depends on another file that is not detected by
an SCons scanner. For this situation, SCons allows you to specific explicitly that one
file depends on another file, and must be rebuilt whenever that file changes. This is
specified using the Depends method:

hello = Program(’hello.c’)
Depends(hello, ’other_file’)

% scons -Q hello
cc -c hello.c -o hello.o
cc -o hello hello.o
% scons -Q hello
scons: ‘hello’ is up to date.

30

Chapter 6. Dependencies

% edit other_file
[CHANGE THE CONTENTS OF other_file]

% scons -Q hello
cc -c hello.c -o hello.o
cc -o hello hello.o

31

Chapter 6. Dependencies

32

Chapter 7. Construction Environments

It is rare that all of the software in a large, complicated system needs to be built the
same way. For example, different source files may need different options enabled on
the command line, or different executable programs need to be linked with differ-
ent libraries. SCons accomodates these different build requirements by allowing you
to create and configure multiple construction environments that control how the
software is built. Technically, a construction environment is an object that has a
number of associated construction variables , each with a name and a value. (A
construction environment also has an attached set of Builder methods, about which
we’ll learn more later.)

A construction environment is created by the Environment method:

env = Environment()

By default, SCons intializes every new construction environment with a set of
construction variables based on the tools that it finds on your system, plus the
default set of builder methods necessary for using those tools. The construction
variables are initialized with values describing the C compiler, the Fortran compiler,
the linker, etc., as well as the command lines to invoke them.

When you initialize a construction environment you can set the values of the envi-
ronment’s construction variables to control how a program is built. For example:

env = Environment(CC = ’gcc’,
CCFLAGS = ’-O2’)

env.Program(’foo.c’)

The construction environment in this example is still initialized with the same de-
fault construction variable values, except that the user has explicitly specified use of
the GNU C compiler gcc , and further specifies that the -O2 (optimization level two)
flag should be used when compiling the object file. In other words, the explicit ini-
tializations of $CC and $CCFLAGS override the default values in the newly-created
construction environment. So a run from this example would look like:

% scons -Q
gcc -o foo.o -c -O2 foo.c
gcc -o foo foo.o

Multiple Construction Environments

The real advantage of construction environments is that you can create as many dif-
ferent construction environments as you need, each tailored to a different way to
build some piece of software or other file. If, for example, we need to build one pro-
gram with the -O2 flag and another with the -g (debug) flag, we would do this like
so:

opt = Environment(CCFLAGS = ’-O2’)
dbg = Environment(CCFLAGS = ’-g’)

opt.Program(’foo’, ’foo.c’)

dbg.Program(’bar’, ’bar.c’)

% scons -Q
cc -o bar.o -c -g bar.c

33

Chapter 7. Construction Environments

cc -o bar bar.o
cc -o foo.o -c -O2 foo.c
cc -o foo foo.o

We can even use multiple construction environments to build multiple versions of a
single program. If you do this by simply trying to use the Program builder with both
environments, though, like this:

opt = Environment(CCFLAGS = ’-O2’)
dbg = Environment(CCFLAGS = ’-g’)

opt.Program(’foo’, ’foo.c’)

dbg.Program(’foo’, ’foo.c’)

Then SCons generates the following error:

% scons -Q

scons: *** Two environments with different actions were specified for the same target: foo.o
File "/home/my/project/SConstruct", line 6, in ?

This is because the two Program calls have each implicitly told SCons to generate
an object file named foo.o , one with a $CCFLAGS value of -O2 and one with a
$CCFLAGS value of -g . SCons can’t just decide that one of them should take prece-
dence over the other, so it generates the error. To avoid this problem, we must explic-
itly specify that each environment compile foo.c to a separately-named object file
using the Object builder, like so:

opt = Environment(CCFLAGS = ’-O2’)
dbg = Environment(CCFLAGS = ’-g’)

o = opt.Object(’foo-opt’, ’foo.c’)
opt.Program(o)

d = dbg.Object(’foo-dbg’, ’foo.c’)
dbg.Program(d)

Notice that each call to the Object builder returns a value, an internal SCons object
that represents the object file that will be built. We then use that object as input to the
Program builder. This avoids having to specify explicitly the object file name in mul-
tiple places, and makes for a compact, readable SConstruct file. Our SCons output
then looks like:

% scons -Q
cc -o foo-dbg.o -c -g foo.c
cc -o foo-dbg foo-dbg.o
cc -o foo-opt.o -c -O2 foo.c
cc -o foo-opt foo-opt.o

Copying Construction Environments

Sometimes you want more than one construction environment to share the same val-
ues for one or more variables. Rather than always having to repeat all of the common
variables when you create each construction environment, you can use the Clone
method to create a copy of a construction environment.

34

Chapter 7. Construction Environments

Like the Environment call that creates a construction environment, the Clone method
takes construction variable assignments, which will override the values in the
copied construction environment. For example, suppose we want to use gcc to create
three versions of a program, one optimized, one debug, and one with neither. We
could do this by creating a "base" construction environment that sets $CC to gcc , and
then creating two copies, one which sets $CCFLAGS for optimization and the other
which sets $CCFLAGS for debugging:

env = Environment(CC = ’gcc’)
opt = env.Clone(CCFLAGS = ’-O2’)
dbg = env.Clone(CCFLAGS = ’-g’)

env.Program(’foo’, ’foo.c’)

o = opt.Object(’foo-opt’, ’foo.c’)
opt.Program(o)

d = dbg.Object(’foo-dbg’, ’foo.c’)
dbg.Program(d)

Then our output would look like:

% scons -Q
gcc -o foo.o -c foo.c
gcc -o foo foo.o
gcc -o foo-dbg.o -c -g foo.c
gcc -o foo-dbg foo-dbg.o
gcc -o foo-opt.o -c -O2 foo.c
gcc -o foo-opt foo-opt.o

Fetching Values From a Construction Environment

You can fetch individual construction variables using the normal syntax for accessing
individual named items in a Python dictionary:

env = Environment()
print "CC is:", env[’CC’]

This example SConstruct file doesn’t build anything, but because it’s actually a
Python script, it will print the value of $CC for us:

% scons -Q
CC is: cc
scons: ‘.’ is up to date.

A construction environment, however, is actually an object with associated methods,
etc. If you want to have direct access to only the dictionary of construction variables,
you can fetch this using the Dictionary method:

env = Environment(FOO = ’foo’, BAR = ’bar’)
dict = env.Dictionary()
for key in [’OBJSUFFIX’, ’LIBSUFFIX’, ’PROGSUFFIX’]:

print "key = %s, value = %s" % (key, dict[key])

This SConstruct file will print the specified dictionary items for us on POSIX systems
as follows:

35

Chapter 7. Construction Environments

% scons -Q
key = OBJSUFFIX, value = .o
key = LIBSUFFIX, value = .a
key = PROGSUFFIX, value =
scons: ‘.’ is up to date.

And on Windows:

C:\> scons -Q
key = OBJSUFFIX, value = .obj
key = LIBSUFFIX, value = .lib
key = PROGSUFFIX, value = .exe
scons: ‘.’ is up to date.

If you want to loop through and print the values of all of the construction variables
in a construction environment, the Python code to do that in sorted order might look
something like:

env = Environment()
dict = env.Dictionary()
keys = dict.keys()
keys.sort()
for key in keys:

print "construction variable = ’%s’, value = ’%s’" % (key, dict[key])

Expanding Values From a Construction Environment

Another way to get information from a construction environment. is to use the subst
method on a string containing $-expansions of construction variable names. As a
simple example, the example from the previous section that used env[’CC’] to fetch
the value of $CC could also be written as:

env = Environment()
print "CC is:", env.subst(’$CC’)

The real advantage of using subst to expand strings is that construction variables in
the result get re-expanded until there are no expansions left in the string. So a simple
fetch of a value like $CCCOM:

env = Environment(CCFLAGS = ’-DFOO’)
print "CCCOM is:", env[’CCCOM’]

Will print the unexpanded value of $CCCOM, showing us the construction variables
that still need to be expanded:

% scons -Q
CCCOM is: $CC $CCFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS -c -o $TARGET $SOURCES
scons: ‘.’ is up to date.

Calling the subst method on $CCOM, however:

env = Environment(CCFLAGS = ’-DFOO’)
print "CCCOM is:", env.subst(’$CCCOM’)

36

Chapter 7. Construction Environments

Will recursively expand all of the $-prefixed construction variables, showing us the
final output:

% scons -Q
CCCOM is: gcc -DFOO -c -o
scons: ‘.’ is up to date.

(Note that because we’re not expanding this in the context of building something
there are no target or source files for $TARGET and $SOURCES to expand.

Modifying a Construction Environment

SCons provides various methods that support modifying existing values in a con-
struction environment.

Replacing Values in a Construction Environment

You can replace existing construction variable values using the Replace method:

env = Environment(CCFLAGS = ’-DDEFINE1’)
env.Replace(CCFLAGS = ’-DDEFINE2’)
env.Program(’foo.c’)

The replacing value (-DDEFINE2 in the above example) completely replaces the value
in the construction environment:

% scons -Q
cc -o foo.o -c -DDEFINE2 foo.c
cc -o foo foo.o

You can safely call Replace for construction variables that don’t exist in the construc-
tion environment:

env = Environment()
env.Replace(NEW_VARIABLE = ’xyzzy’)
print "NEW_VARIABLE =", env[’NEW_VARIABLE’]

In this case, the construction variable simply gets added to the construction environ-
ment:

% scons -Q
NEW_VARIABLE = xyzzy
scons: ‘.’ is up to date.

Because the variables aren’t expanded until the construction environment is actually
used to build the targets, and because SCons function and method calls are order-
independent, the last replacement "wins" and is used to build all targets, regardless
of the order in which the calls to Replace() are interspersed with calls to builder meth-
ods:

env = Environment(CCFLAGS = ’-DDEFINE1’)
print "CCFLAGS =", env[’CCFLAGS’]
env.Program(’foo.c’)

env.Replace(CCFLAGS = ’-DDEFINE2’)
print "CCFLAGS =", env[’CCFLAGS’]
env.Program(’bar.c’)

37

Chapter 7. Construction Environments

The timing of when the replacement actually occurs relative to when the targets get
built becomes apparent if we run scons without the -Q option:

% scons
scons: Reading SConscript files ...
CCFLAGS = -DDEFINE1
CCFLAGS = -DDEFINE2
scons: done reading SConscript files.
scons: Building targets ...
cc -o bar.o -c -DDEFINE2 bar.c
cc -o bar bar.o
cc -o foo.o -c -DDEFINE2 foo.c
cc -o foo foo.o
scons: done building targets.

Because the replacement occurs while the SConscript files are being read, the
$CCFLAGS variable has already been set to -DDEFINE2 by the time the foo.o target
is built, even though the call to the Replace method does not occur until later in the
SConscript file.

Appending to the End of Values in a Construction Environment

You can append a value to an existing construction variable using the Append
method:

env = Environment(CCFLAGS = ’-DMY_VALUE’)
env.Append(CCFLAGS = ’ -DLAST’)
env.Program(’foo.c’)

SCons then supplies both the -DMY_VALUEand -DLAST flags when compiling the ob-
ject file:

% scons -Q
cc -o foo.o -c -DMY_VALUE -DLAST foo.c
cc -o foo foo.o

If the construction variable doesn’t already exist, the Append method will create it:

env = Environment()
env.Append(NEW_VARIABLE = ’added’)
print "NEW_VARIABLE =", env[’NEW_VARIABLE’]

Which yields:

% scons -Q
NEW_VARIABLE = added
scons: ‘.’ is up to date.

Appending to the Beginning of Values in a Construction
Environment

You can append a value to the beginning an existing construction variable using the
Prepend method:

38

Chapter 7. Construction Environments

env = Environment(CCFLAGS = ’-DMY_VALUE’)
env.Prepend(CCFLAGS = ’-DFIRST ’)
env.Program(’foo.c’)

SCons then supplies both the -DFIRST and -DMY_VALUEflags when compiling the
object file:

% scons -Q
cc -o foo.o -c -DFIRST -DMY_VALUE foo.c
cc -o foo foo.o

If the construction variable doesn’t already exist, the Prepend method will create it:

env = Environment()
env.Prepend(NEW_VARIABLE = ’added’)
print "NEW_VARIABLE =", env[’NEW_VARIABLE’]

Which yields:

% scons -Q
NEW_VARIABLE = added
scons: ‘.’ is up to date.

39

Chapter 7. Construction Environments

40

Chapter 8. Controlling the External Environment Used to
Execute Build Commands

When SCons builds a target file, it does not execute the commands with the same
external environment that you used to execute SCons. Instead, it uses the dictionary
stored in the $ENV construction variable as the external environment for executing
commands.

The most important ramification of this behavior is that the PATHenvironment vari-
able, which controls where the operating system will look for commands and util-
ities, is not the same as in the external environment from which you called SCons.
This means that SCons will not, by default, necessarily find all of the tools that you
can execute from the command line.

The default value of the PATH environment variable on a POSIX system is
/usr/local/bin:/bin:/usr/bin . The default value of the PATH environment
variable on a Windows system comes from the Windows registry value for the
command interpreter. If you want to execute any commands--compilers, linkers,
etc.--that are not in these default locations, you need to set the PATH value in the
$ENV dictionary in your construction environment.

The simplest way to do this is to initialize explicitly the value when you create the
construction environment; this is one way to do that:

path = [’/usr/local/bin’, ’/bin’, ’/usr/bin’]
env = Environment(ENV = {’PATH’ : path})

Assign a dictionary to the $ENV construction variable in this way completely resets
the external environment so that the only variable that will be set when external com-
mands are executed will be the PATHvalue. If you want to use the rest of the values
in $ENV and only set the value of PATH, the most straightforward way is probably:

env[’ENV’][’PATH’] = [’/usr/local/bin’, ’/bin’, ’/usr/bin’]

Note that SCons does allow you to define the directories in the PATHin a string, sepa-
rated by the pathname-separator character for your system (’:’ on POSIX systems, ’;’
on Windows):

env[’ENV’][’PATH’] = ’/usr/local/bin:/bin:/usr/bin’

But doing so makes your SConscript file less portable, (although in this case that
may not be a huge concern since the directories you list are likley system-specific,
anyway).

Propagating PATHFrom the External Environment
You may want to propagate the external PATHto the execution environment for com-
mands. You do this by initializing the PATHvariable with the PATHvalue from the
os.environ dictionary, which is Python’s way of letting you get at the external envi-
ronment:

import os
env = Environment(ENV = {’PATH’ : os.environ[’PATH’]})

Alternatively, you may find it easier to just propagate the entire external environment
to the execution environment for commands. This is simpler to code than explicity
selecting the PATHvalue:

41

Chapter 8. Controlling the External Environment Used to Execute Build Commands

import os
env = Environment(ENV = os.environ)

Either of these will guarantee that SCons will be able to execute any command that
you can execute from the command line. The drawback is that the build can behave
differently if it’s run by people with different PATH values in their environment--
for example, both the /bin and /usr/local/bin directories have different cc com-
mands, then which one will be used to compile programs will depend on which
directory is listed first in the user’s PATHvariable.

42

Chapter 9. Controlling a Build From the Command Line

SCons provides a number of ways that allow the writer of the SConscript files to
give users a great deal of control over how to run the builds.

Not Having to Specify Command-Line Options Each Time: the
SCONSFLAGSEnvironment Variable

Users may find themselves supplying the same command-line options every time
they run SCons. For example, a user might find that it saves time to specify a value
of -j 2 to run the builds in parallel. To avoid having to type -j 2 by hand every
time, you can set the external environment variable SCONSFLAGSto a string contain-
ing command-line options that you want SCons to use.

If, for example, and you’re using a POSIX shell that’s compatible with the Bourne
shell, and you always want SCons to use the -Q option, you can set the SCONSFLAGS
environment as follows:

% scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...

... [build output] ...
scons: done building targets.
% export SCONSFLAGS="-Q"
% scons

... [build output] ...

Users of csh -style shells on POSIX systems can set the SCONSFLAGSenvironment as
follows:

$ setenv SCONSFLAGS "-Q"

Windows users may typically want to set this SCONSFLAGSin the appropriate tab of
the System Properties window.

Getting at Command-Line Targets
SCons supports a COMMAND_LINE_TARGETSvariable that lets you get at the list of tar-
gets that the user specified on the command line. You can use the targets to manipu-
late the build in any way you wish. As a simple example, suppose that you want to
print a reminder to the user whenever a specific program is built. You can do this by
checking for the target in the COMMAND_LINE_TARGETSlist:

if ’bar’ in COMMAND_LINE_TARGETS:
print "Don’t forget to copy ‘bar’ to the archive!"

Default(Program(’foo.c’))
Program(’bar.c’)

Then, running SCons with the default target works as it always does, but explicity
specifying the bar target on the command line generates the warning message:

% scons -Q
cc -o foo.o -c foo.c
cc -o foo foo.o
% scons -Q bar
Don’t forget to copy ‘bar’ to the archive!
cc -o bar.o -c bar.c

43

Chapter 9. Controlling a Build From the Command Line

cc -o bar bar.o

Another practical use for the COMMAND_LINE_TARGETSvariable might be to speed up
a build by only reading certain subsidiary SConscript files if a specific target is re-
quested.

Controlling the Default Targets
One of the most basic things you can control is which targets SCons will build by
default--that is, when there are no targets specified on the command line. As men-
tioned previously, SCons will normally build every target in or below the current
directory by default--that is, when you don’t explicitly specify one or more targets
on the command line. Sometimes, however, you may want to specify explicitly that
only certain programs, or programs in certain directories, should be built by default.
You do this with the Default function:

env = Environment()
hello = env.Program(’hello.c’)
env.Program(’goodbye.c’)
Default(hello)

This SConstruct file knows how to build two programs, hello and goodbye , but
only builds the hello program by default:

% scons -Q
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q
scons: ‘hello’ is up to date.
% scons -Q goodbye
cc -o goodbye.o -c goodbye.c
cc -o goodbye goodbye.o

Note that, even when you use the Default function in your SConstruct file, you can
still explicitly specify the current directory (.) on the command line to tell SCons to
build everything in (or below) the current directory:

% scons -Q .
cc -o goodbye.o -c goodbye.c
cc -o goodbye goodbye.o
cc -o hello.o -c hello.c
cc -o hello hello.o

You can also call the Default function more than once, in which case each call adds
to the list of targets to be built by default:

env = Environment()
prog1 = env.Program(’prog1.c’)
Default(prog1)
prog2 = env.Program(’prog2.c’)
prog3 = env.Program(’prog3.c’)
Default(prog3)

Or you can specify more than one target in a single call to the Default function:

env = Environment()
prog1 = env.Program(’prog1.c’)

44

Chapter 9. Controlling a Build From the Command Line

prog2 = env.Program(’prog2.c’)
prog3 = env.Program(’prog3.c’)
Default(prog1, prog3)

Either of these last two examples will build only the prog1 and prog3 programs by
default:

% scons -Q
cc -o prog1.o -c prog1.c
cc -o prog1 prog1.o
cc -o prog3.o -c prog3.c
cc -o prog3 prog3.o
% scons -Q .
cc -o prog2.o -c prog2.c
cc -o prog2 prog2.o

You can list a directory as an argument to Default :

env = Environment()
env.Program([’prog1/main.c’, ’prog1/foo.c’])
env.Program([’prog2/main.c’, ’prog2/bar.c’])
Default(’prog1’)

In which case only the target(s) in that directory will be built by default:

% scons -Q
cc -o prog1/foo.o -c prog1/foo.c
cc -o prog1/main.o -c prog1/main.c
cc -o prog1/main prog1/main.o prog1/foo.o
% scons -Q
scons: ‘prog1’ is up to date.
% scons -Q .
cc -o prog2/bar.o -c prog2/bar.c
cc -o prog2/main.o -c prog2/main.c
cc -o prog2/main prog2/main.o prog2/bar.o

Lastly, if for some reason you don’t want any targets built by default, you can use the
Python None variable:

env = Environment()
prog1 = env.Program(’prog1.c’)
prog2 = env.Program(’prog2.c’)
Default(None)

Which would produce build output like:

% scons -Q
scons: *** No targets specified and no Default() targets found. Stop.
% scons -Q .
cc -o prog1.o -c prog1.c
cc -o prog1 prog1.o
cc -o prog2.o -c prog2.c
cc -o prog2 prog2.o

45

Chapter 9. Controlling a Build From the Command Line

Getting at the List of Default Targets
SCons supports a DEFAULT_TARGETSvariable that lets you get at the current list of
default targets. The DEFAULT_TARGETSvariable has two important differences from
the COMMAND_LINE_TARGETSvariable. First, the DEFAULT_TARGETSvariable is a list of
internal SCons nodes, so you need to convert the list elements to strings if you want
to print them or look for a specific target name. Fortunately, you can do this easily by
using the Python map function to run the list through str :

prog1 = Program(’prog1.c’)
Default(prog1)
print "DEFAULT_TARGETS is", map(str, DEFAULT_TARGETS)

(Keep in mind that all of the manipulation of the DEFAULT_TARGETSlist takes place
during the first phase when SCons is reading up the SConscript files, which is obvi-
ous if we leave off the -Q flag when we run SCons:)

% scons
scons: Reading SConscript files ...
DEFAULT_TARGETS is [’prog1’]
scons: done reading SConscript files.
scons: Building targets ...
cc -o prog1.o -c prog1.c
cc -o prog1 prog1.o
scons: done building targets.

Second, the contents of the DEFAULT_TARGETSlist change in response to calls to the
Default : function, as you can see from the following SConstruct file:

prog1 = Program(’prog1.c’)
Default(prog1)
print "DEFAULT_TARGETS is now", map(str, DEFAULT_TARGETS)
prog2 = Program(’prog2.c’)
Default(prog2)
print "DEFAULT_TARGETS is now", map(str, DEFAULT_TARGETS)

Which yields the output:

% scons
scons: Reading SConscript files ...
DEFAULT_TARGETS is now [’prog1’]
DEFAULT_TARGETS is now [’prog1’, ’prog2’]
scons: done reading SConscript files.
scons: Building targets ...
cc -o prog1.o -c prog1.c
cc -o prog1 prog1.o
cc -o prog2.o -c prog2.c
cc -o prog2 prog2.o
scons: done building targets.

In practice, this simply means that you need to pay attention to the order in which
you call the Default function and refer to the DEFAULT_TARGETSlist, to make sure
that you don’t examine the list before you’ve added the default targets you expect to
find in it.

46

Chapter 9. Controlling a Build From the Command Line

Getting at the List of Build Targets, Regardless of Origin
We’ve already been introduced to the COMMAND_LINE_TARGETSvariable, which con-
tains a list of targets specified on the command line, and the DEFAULT_TARGETSvari-
able, which contains a list of targets specified via calls to the Default method or
function. Sometimes, however, you want a list of whatever targets SCons will try to
build, regardless of whether the targets came from the command line or a Default
call. You could code this up by hand, as follows:

if COMMAND_LINE_TARGETS:
targets = COMMAND_LINE_TARGETS

else:
targets = DEFAULT_TARGETS

SCons, however, provides a convenient BUILD_TARGETSvariable that eliminates the
need for this by-hand manipulation. Essentially, the BUILD_TARGETSvariable con-
tains a list of the command-line targets, if any were specified, and if no command-
line targets were specified, it contains a list of the targets specified via the Default
method or function.

Because BUILD_TARGETSmay contain a list of SCons nodes, you must convert the list
elements to strings if you want to print them or look for a specific target name, just
like the DEFAULT_TARGETSlist:

prog1 = Program(’prog1.c’)
Program(’prog2.c’)
Default(prog1)
print "BUILD_TARGETS is", map(str, BUILD_TARGETS)

Notice how the value of BUILD_TARGETSchanges depending on whether a target is
specified on the command line:

% scons -Q
BUILD_TARGETS is [’prog1’]
cc -o prog1.o -c prog1.c
cc -o prog1 prog1.o
% scons -Q prog2
BUILD_TARGETS is [’prog2’]
cc -o prog2.o -c prog2.c
cc -o prog2 prog2.o
% scons -Q -c .
BUILD_TARGETS is [’.’]
Removed prog1.o
Removed prog1
Removed prog2.o
Removed prog2

Command-Line variable =value Build Options
You may want to control various aspects of your build by allowing the user to specify
variable =value values on the command line. For example, suppose you want users
to be able to build a debug version of a program by running SCons as follows:

% scons -Q debug=1

SCons provides an ARGUMENTSdictionary that stores all of the variable =value as-
signments from the command line. This allows you to modify aspects of your build
in response to specifications on the command line. (Note that unless you want to

47

Chapter 9. Controlling a Build From the Command Line

require that users always specify an option, you probably want to use the Python
ARGUMENTS.get() function, which allows you to specify a default value to be used if
there is no specification on the command line.)

The following code sets the $CCFLAGS construction variable in response to the
debug flag being set in the ARGUMENTSdictionary:

env = Environment()
debug = ARGUMENTS.get(’debug’, 0)
if int(debug):

env.Append(CCFLAGS = ’-g’)
env.Program(’prog.c’)

This results in the -g compiler option being used when debug=1 is used on the com-
mand line:

% scons -Q debug=0
cc -o prog.o -c prog.c
cc -o prog prog.o
% scons -Q debug=0
scons: ‘.’ is up to date.
% scons -Q debug=1
cc -o prog.o -c -g prog.c
cc -o prog prog.o
% scons -Q debug=1
scons: ‘.’ is up to date.

Notice that SCons keeps track of the last values used to build the object files, and as
a result correctly rebuilds the object and executable files only when the value of the
debug argument has changed.

Controlling Command-Line Build Options
Being able to use a command-line build option like debug=1 is handy, but it can be a
chore to write specific Python code to recognize each such option and apply the val-
ues to a construction variable. To help with this, SCons supports a class to define such
build options easily, and a mechanism to apply the build options to a construction
environment. This allows you to control how the build options affect construction
environments.

For example, suppose that you want users to set a RELEASEconstruction variable on
the command line whenever the time comes to build a program for release, and that
the value of this variable should be added to the command line with the appropri-
ate -D option (or other command line option) to pass the value to the C compiler.
Here’s how you might do that by setting the appropriate value in a dictionary for the
$CPPDEFINES construction variable:

opts = Options()
opts.Add(’RELEASE’, ’Set to 1 to build for release’, 0)
env = Environment(options = opts,

CPPDEFINES={’RELEASE_BUILD’ : ’${RELEASE}’})
env.Program([’foo.c’, ’bar.c’])

This SConstruct file first creates an Options object (the opts = Options() call),
and then uses the object’s Add method to indicate that the RELEASEoption can be set
on the command line, and that it’s default value will be 0 (the third argument to the
Add method). The second argument is a line of help text; we’ll learn how to use it in
the next section.

48

Chapter 9. Controlling a Build From the Command Line

We then pass the created Options object as an options keyword argument to the
Environment call used to create the construction environment. This then allows a
user to set the RELEASEbuild option on the command line and have the variable
show up in the command line used to build each object from a C source file:

% scons -Q RELEASE=1
cc -o bar.o -c -DRELEASE_BUILD=1 bar.c
cc -o foo.o -c -DRELEASE_BUILD=1 foo.c
cc -o foo foo.o bar.o

Providing Help for Command-Line Build Options
To make command-line build options most useful, you ideally want to provide some
help text that will describe the available options when the user runs scons -h . You
could write this text by hand, but SCons provides an easier way. Options objects sup-
port a GenerateHelpText method that will, as its name indicates, generate text that
describes the various options that have been added to it. You then pass the output
from this method to the Help function:

opts = Options(’custom.py’)
opts.Add(’RELEASE’, ’Set to 1 to build for release’, 0)
env = Environment(options = opts)
Help(opts.GenerateHelpText(env))

SCons will now display some useful text when the -h option is used:

% scons -Q -h

RELEASE: Set to 1 to build for release
default: 0
actual: 0

Use scons -H for help about command-line options.

Notice that the help output shows the default value, and the current actual value of
the build option.

Reading Build Options From a File
Being able to use a command-line build option like debug=1 is handy, but it can be
a chore to write specific Python code to recognize each such option and apply the
values to a construction variable. To help with this, SCons supports a class to define
such build options easily and to read build option values from a file. This allows
you to control how the build options affect construction environments. The way you
do this is by specifying a file name when you call Options , like custom.py in the
following example:

opts = Options(’custom.py’)
opts.Add(’RELEASE’, ’Set to 1 to build for release’, 0)
env = Environment(options = opts,

CPPDEFINES={’RELEASE_BUILD’ : ’${RELEASE}’})
env.Program([’foo.c’, ’bar.c’])
Help(opts.GenerateHelpText(env))

This then allows us to control the RELEASEvariable by setting it in the custom.py file:

49

Chapter 9. Controlling a Build From the Command Line

RELEASE = 1

Note that this file is actually executed like a Python script. Now when we run SCons:

% scons -Q
cc -o bar.o -c -D[’RELEASE_BUILD=’, 1] bar.c
cc -o foo.o -c -D[’RELEASE_BUILD=’, 1] foo.c
cc -o foo foo.o bar.o

And if we change the contents of custom.py to:

RELEASE = 0

The object files are rebuilt appropriately with the new option:

% scons -Q
cc -o bar.o -c -D[’RELEASE_BUILD=’, 0] bar.c
cc -o foo.o -c -D[’RELEASE_BUILD=’, 0] foo.c
cc -o foo foo.o bar.o

Canned Build Options
SCons provides a number of functions that provide ready-made behaviors for various
types of command-line build options.

True/False Values: the BoolOption Build Option
It’s often handy to be able to specify an option that controls a simple Boolean
variable with a true or false value. It would be even more handy to accomodate
users who have different preferences for how to represent true or false values. The
BoolOption function makes it easy to accomodate a variety of common values that
represent true or false .

The BoolOption function takes three arguments: the name of the build option, the
default value of the build option, and the help string for the option. It then returns
appropriate information for passing to the Add method of an Options object, like so:

opts = Options(’custom.py’)
opts.Add(BoolOption(’RELEASE’, ’Set to build for release’, 0))
env = Environment(options = opts,

CPPDEFINES={’RELEASE_BUILD’ : ’${RELEASE}’})
env.Program(’foo.c’)

With this build option, the RELEASEvariable can now be enabled by setting it to the
value yes or t :

% scons -Q RELEASE=yes foo.o
cc -o foo.o -c -D[’RELEASE_BUILD=’, True] foo.c

% scons -Q RELEASE=t foo.o
cc -o foo.o -c -D[’RELEASE_BUILD=’, True] foo.c

Other values that equate to true include y , 1, on and all .

Conversely, RELEASEmay now be given a false value by setting it to no or f :

50

Chapter 9. Controlling a Build From the Command Line

% scons -Q RELEASE=no foo.o
cc -o foo.o -c -D[’RELEASE_BUILD=’, False] foo.c

% scons -Q RELEASE=f foo.o
cc -o foo.o -c -D[’RELEASE_BUILD=’, False] foo.c

Other values that equate to true include n, 0, off and none .

Lastly, if a user tries to specify any other value, SCons supplies an appropriate error
message:

% scons -Q RELEASE=bad_value foo.o

scons: *** Error converting option: RELEASE
Invalid value for boolean option: bad_value
File "/home/my/project/SConstruct", line 4, in ?

Single Value From a List: the EnumOption Build Option
Suppose that we want a user to be able to set a COLORoption that selects a background
color to be displayed by an application, but that we want to restrict the choices to a
specific set of allowed colors. This can be set up quite easily using the EnumOption ,
which takes a list of allowed_values in addition to the variable name, default value,
and help text arguments:

opts = Options(’custom.py’)
opts.Add(EnumOption(’COLOR’, ’Set background color’, ’red’,

allowed_values=(’red’, ’green’, ’blue’)))
env = Environment(options = opts,

CPPDEFINES={’COLOR’ : ’"${COLOR}"’})
env.Program(’foo.c’)

The user can now explicity set the COLORbuild option to any of the specified allowed
values:

% scons -Q COLOR=red foo.o
cc -o foo.o -c -DCOLOR="red" foo.c
% scons -Q COLOR=blue foo.o
cc -o foo.o -c -DCOLOR="blue" foo.c
% scons -Q COLOR=green foo.o
cc -o foo.o -c -DCOLOR="green" foo.c

But, almost more importantly, an attempt to set COLORto a value that’s not in the list
generates an error message:

% scons -Q COLOR=magenta foo.o

scons: *** Invalid value for option COLOR: magenta
File "/home/my/project/SConstruct", line 5, in ?

The EnumOption function also supports a way to map alternate names to allowed
values. Suppose, for example, that we want to allow the user to use the word navy
as a synonym for blue . We do this by adding a map dictionary that will map its key
values to the desired legal value:

opts = Options(’custom.py’)
opts.Add(EnumOption(’COLOR’, ’Set background color’, ’red’,

51

Chapter 9. Controlling a Build From the Command Line

allowed_values=(’red’, ’green’, ’blue’),
map={’navy’:’blue’}))

env = Environment(options = opts,
CPPDEFINES={’COLOR’ : ’"${COLOR}"’})

env.Program(’foo.c’)

As desired, the user can then use navy on the command line, and SCons will translate
it into blue when it comes time to use the COLORoption to build a target:

% scons -Q COLOR=navy foo.o
cc -o foo.o -c -DCOLOR="blue" foo.c

By default, when using the EnumOption function, arguments that differ from the legal
values only in case are treated as illegal values:

% scons -Q COLOR=Red foo.o

scons: *** Invalid value for option COLOR: Red
File "/home/my/project/SConstruct", line 5, in ?
% scons -Q COLOR=BLUE foo.o

scons: *** Invalid value for option COLOR: BLUE
File "/home/my/project/SConstruct", line 5, in ?
% scons -Q COLOR=nAvY foo.o

scons: *** Invalid value for option COLOR: nAvY
File "/home/my/project/SConstruct", line 5, in ?

The EnumOption function can take an additional ignorecase keyword argument
that, when set to 1, tells SCons to allow case differences when the values are spec-
ified:

opts = Options(’custom.py’)
opts.Add(EnumOption(’COLOR’, ’Set background color’, ’red’,

allowed_values=(’red’, ’green’, ’blue’),
map={’navy’:’blue’},
ignorecase=1))

env = Environment(options = opts,
CPPDEFINES={’COLOR’ : ’"${COLOR}"’})

env.Program(’foo.c’)

Which yields the output:

% scons -Q COLOR=Red foo.o
cc -o foo.o -c -DCOLOR="Red" foo.c
% scons -Q COLOR=BLUE foo.o
cc -o foo.o -c -DCOLOR="BLUE" foo.c
% scons -Q COLOR=nAvY foo.o
cc -o foo.o -c -DCOLOR="blue" foo.c
% scons -Q COLOR=green foo.o
cc -o foo.o -c -DCOLOR="green" foo.c

Notice that an ignorecase value of 1 preserves the case-spelling that the user sup-
plied. If you want SCons to translate the names into lower-case, regardless of the case
used by the user, specify an ignorecase value of 2:

opts = Options(’custom.py’)
opts.Add(EnumOption(’COLOR’, ’Set background color’, ’red’,

allowed_values=(’red’, ’green’, ’blue’),
map={’navy’:’blue’},

52

Chapter 9. Controlling a Build From the Command Line

ignorecase=2))
env = Environment(options = opts,

CPPDEFINES={’COLOR’ : ’"${COLOR}"’})
env.Program(’foo.c’)

Now SCons will use values of red , green or blue regardless of how the user spells
those values on the command line:

% scons -Q COLOR=Red foo.o
cc -o foo.o -c -DCOLOR="red" foo.c
% scons -Q COLOR=nAvY foo.o
cc -o foo.o -c -DCOLOR="blue" foo.c
% scons -Q COLOR=GREEN foo.o
cc -o foo.o -c -DCOLOR="green" foo.c

Multiple Values From a List: the ListOption Build Option
Another way in which you might want to allow users to control build option is to
specify a list of one or more legal values. SCons supports this through the ListOption
function. If, for example, we want a user to be able to set a COLORSoption to one or
more of the legal list of values:

opts = Options(’custom.py’)
opts.Add(ListOption(’COLORS’, ’List of colors’, 0,

[’red’, ’green’, ’blue’]))
env = Environment(options = opts,

CPPDEFINES={’COLORS’ : ’"${COLORS}"’})
env.Program(’foo.c’)

A user can now specify a comma-separated list of legal values, which will get trans-
lated into a space-separated list for passing to the any build commands:

% scons -Q COLORS=red,blue foo.o
cc -o foo.o -c -DCOLORS="red blue" foo.c
% scons -Q COLORS=blue,green,red foo.o
cc -o foo.o -c -DCOLORS="blue green red" foo.c

In addition, the ListOption function allows the user to specify explicit keywords of
all or none to select all of the legal values, or none of them, respectively:

% scons -Q COLORS=all foo.o
cc -o foo.o -c -DCOLORS="red green blue" foo.c
% scons -Q COLORS=none foo.o
cc -o foo.o -c -DCOLORS="" foo.c

And, of course, an illegal value still generates an error message:

% scons -Q COLORS=magenta foo.o

scons: *** Error converting option: COLORS
Invalid value(s) for option: magenta
File "/home/my/project/SConstruct", line 5, in ?

53

Chapter 9. Controlling a Build From the Command Line

Path Names: the PathOption Build Option
SCons supports a PathOption function to make it easy to create a build option to
control an expected path name. If, for example, you need to define a variable in the
preprocessor that control the location of a configuration file:

opts = Options(’custom.py’)
opts.Add(PathOption(’CONFIG’,

’Path to configuration file’,
’/etc/my_config’))

env = Environment(options = opts,
CPPDEFINES={’CONFIG_FILE’ : ’"$CONFIG"’})

env.Program(’foo.c’)

This then allows the user to override the CONFIGbuild option on the command line
as necessary:

% scons -Q foo.o
cc -o foo.o -c -DCONFIG_FILE="/etc/my_config" foo.c
% scons -Q CONFIG=/usr/local/etc/other_config foo.o
scons: ‘foo.o’ is up to date.

By default, PathOption checks to make sure that the specified path exists and gener-
ates an error if it doesn’t:

% scons -Q CONFIG=/does/not/exist foo.o

scons: *** Path for option CONFIG does not exist: /does/not/exist
File "/home/my/project/SConstruct", line 6, in ?

PathOption provides a number of methods that you can use to change this behavior.
If you want to ensure that any specified paths are, in fact, files and not directories,
use the PathOption.PathIsFile method:

opts = Options(’custom.py’)
opts.Add(PathOption(’CONFIG’,

’Path to configuration file’,
’/etc/my_config’,
PathOption.PathIsFile))

env = Environment(options = opts,
CPPDEFINES={’CONFIG_FILE’ : ’"$CONFIG"’})

env.Program(’foo.c’)

Conversely, to ensure that any specified paths are directories and not files, use the
PathOption.PathIsDir method:

opts = Options(’custom.py’)
opts.Add(PathOption(’DBDIR’,

’Path to database directory’,
’/var/my_dbdir’,
PathOption.PathIsDir))

env = Environment(options = opts,
CPPDEFINES={’DBDIR’ : ’"$DBDIR"’})

env.Program(’foo.c’)

If you want to make sure that any specified paths are directories, and
you would like the directory created if it doesn’t already exist, use the
PathOption.PathIsDirCreate method:

opts = Options(’custom.py’)

54

Chapter 9. Controlling a Build From the Command Line

opts.Add(PathOption(’DBDIR’,
’Path to database directory’,
’/var/my_dbdir’,
PathOption.PathIsDirCreate))

env = Environment(options = opts,
CPPDEFINES={’DBDIR’ : ’"$DBDIR"’})

env.Program(’foo.c’)

Lastly, if you don’t care whether the path exists, is a file, or a directory, use the
PathOption.PathAccept method to accept any path that the user supplies:

opts = Options(’custom.py’)
opts.Add(PathOption(’OUTPUT’,

’Path to output file or directory’,
None,
PathOption.PathAccept))

env = Environment(options = opts,
CPPDEFINES={’OUTPUT’ : ’"$OUTPUT"’})

env.Program(’foo.c’)

Enabled/Disabled Path Names: the PackageOption Build Option
Sometimes you want to give users even more control over a path name variable,
allowing them to explicitly enable or disable the path name by using yes or no key-
words, in addition to allow them to supply an explicit path name. SCons supports
the PackageOption function to support this:

opts = Options(’custom.py’)
opts.Add(PackageOption(’PACKAGE’,

’Location package’,
’/opt/location’))

env = Environment(options = opts,
CPPDEFINES={’PACKAGE’ : ’"$PACKAGE"’})

env.Program(’foo.c’)

When the SConscript file uses the PackageOption funciton, user can now still use
the default or supply an overriding path name, but can now explicitly set the speci-
fied variable to a value that indicates the package should be enabled (in which case
the default should be used) or disabled:

% scons -Q foo.o
cc -o foo.o -c -DPACKAGE="/opt/location" foo.c
% scons -Q PACKAGE=/usr/local/location foo.o
cc -o foo.o -c -DPACKAGE="/usr/local/location" foo.c
% scons -Q PACKAGE=yes foo.o
cc -o foo.o -c -D[’PACKAGE="’, True, ’"’] foo.c
% scons -Q PACKAGE=no foo.o
cc -o foo.o -c -D[’PACKAGE="’, False, ’"’] foo.c

Adding Multiple Command-Line Build Options at Once
Lastly, SCons provides a way to add multiple build options to an Options object
at once. Instead of having to call the Add method multiple times, you can call the
AddOptions method with a list of build options to be added to the object. Each build
option is specified as either a tuple of arguments, just like you’d pass to the Add

55

Chapter 9. Controlling a Build From the Command Line

method itself, or as a call to one of the canned functions for pre-packaged command-
line build options. in any order:

opts = Options()
opts.AddOptions(

(’RELEASE’, ’Set to 1 to build for release’, 0),
(’CONFIG’, ’Configuration file’, ’/etc/my_config’),
BoolOption(’warnings’, ’compilation with -Wall and similiar’, 1),
EnumOption(’debug’, ’debug output and symbols’, ’no’,

allowed_values=(’yes’, ’no’, ’full’),
map={}, ignorecase=0), # case sensitive

ListOption(’shared’,
’libraries to build as shared libraries’,
’all’,
names = list_of_libs),

PackageOption(’x11’,
’use X11 installed here (yes = search some places)’,
’yes’),

PathOption(’qtdir’, ’where the root of Qt is installed’, qtdir),
)

56

Chapter 10. Providing Build Help: the Help Function

It’s often very useful to be able to give users some help that describes the specific
targets, build options, etc., that can be used for your build. SCons provides the Help
function to allow you to specify this help text:

Help("""
Type: ’scons program’ to build the production program,

’scons debug’ to build the debug version.
""")

(Note the above use of the Python triple-quote syntax, which comes in very handy
for specifying multi-line strings like help text.)

When the SConstruct or SConscript files contain such a call to the Help function,
the specified help text will be displayed in response to the SCons -h option:

% scons -h
scons: Reading SConscript files ...
scons: done reading SConscript files.

Type: ’scons program’ to build the production program,
’scons debug’ to build the debug version.

Use scons -H for help about command-line options.

The SConscript files may contain multiple calls to the Help function, in which case
the specified text(s) will be concatenated when displayed. This allows you to split up
the help text across multiple SConscript files. In this situation, the order in which
the SConscript files are called will determine the order in which the Help functions
are called, which will determine the order in which the various bits of text will get
concatenated.

Another use would be to make the help text conditional on some variable. For exam-
ple, suppose you only want to display a line about building a Windows-only version
of a program when actually run on Windows. The following SConstruct file:

env = Environment()

Help("\nType: ’scons program’ to build the production program.\n")

if env[’PLATFORM’] == ’win32’:
Help("\nType: ’scons windebug’ to build the Windows debug version.\n")

Will display the completely help text on Windows:

C:\> scons -h
scons: Reading SConscript files ...
scons: done reading SConscript files.

Type: ’scons program’ to build the production program.

Type: ’scons windebug’ to build the Windows debug version.

Use scons -H for help about command-line options.

But only show the relevant option on a Linux or UNIX system:

% scons -h
scons: Reading SConscript files ...
scons: done reading SConscript files.

57

Chapter 10. Providing Build Help: the Help Function

Type: ’scons program’ to build the production program.

Use scons -H for help about command-line options.

If there is no Help text in the SConstruct or SConscript files, SCons will revert to
displaying its standard list that describes the SCons command-line options. This list
is also always displayed whenever the -H option is used.

58

Chapter 11. Installing Files in Other Directories: the Install
Builder

Once a program is built, it is often appropriate to install it in another directory for
public use. You use the Install method to arrange for a program, or any other file,
to be copied into a destination directory:

env = Environment()
hello = env.Program(’hello.c’)
env.Install(’/usr/bin’, hello)

Note, however, that installing a file is still considered a type of file "build." This is
important when you remember that the default behavior of SCons is to build files in
or below the current directory. If, as in the example above, you are installing files in a
directory outside of the top-level SConstruct file’s directory tree, you must specify
that directory (or a higher directory, such as /) for it to install anything there:

% scons -Q
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q /usr/bin
Install file: "hello" as "/usr/bin/hello"

It can, however, be cumbersome to remember (and type) the specific destination di-
rectory in which the program (or any other file) should be installed. This is an area
where the Alias function comes in handy, allowing you, for example, to create a
pseudo-target named install that can expand to the specified destination directory:

env = Environment()
hello = env.Program(’hello.c’)
env.Install(’/usr/bin’, hello)
env.Alias(’install’, ’/usr/bin’)

This then yields the more natural ability to install the program in its destination as
follows:

% scons -Q
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q install
Install file: "hello" as "/usr/bin/hello"

Installing Multiple Files in a Directory
You can install multiple files into a directory simply by calling the Install function
multiple times:

env = Environment()
hello = env.Program(’hello.c’)
goodbye = env.Program(’goodbye.c’)
env.Install(’/usr/bin’, hello)
env.Install(’/usr/bin’, goodbye)
env.Alias(’install’, ’/usr/bin’)

Or, more succinctly, listing the multiple input files in a list (just like you can do with
any other builder):

59

Chapter 11. Installing Files in Other Directories: the Install Builder

env = Environment()
hello = env.Program(’hello.c’)
goodbye = env.Program(’goodbye.c’)
env.Install(’/usr/bin’, [hello, goodbye])
env.Alias(’install’, ’/usr/bin’)

Either of these two examples yields:

% scons -Q install
cc -o goodbye.o -c goodbye.c
cc -o goodbye goodbye.o
Install file: "goodbye" as "/usr/bin/goodbye"
cc -o hello.o -c hello.c
cc -o hello hello.o
Install file: "hello" as "/usr/bin/hello"

Installing a File Under a Different Name
The Install method preserves the name of the file when it is copied into the desti-
nation directory. If you need to change the name of the file when you copy it, use the
InstallAs function:

env = Environment()
hello = env.Program(’hello.c’)
env.InstallAs(’/usr/bin/hello-new’, hello)
env.Alias(’install’, ’/usr/bin’)

This installs the hello program with the name hello-new as follows:

% scons -Q install
cc -o hello.o -c hello.c
cc -o hello hello.o
Install file: "hello" as "/usr/bin/hello-new"

Installing Multiple Files Under Different Names
Lastly, if you have multiple files that all need to be installed with different file names,
you can either call the InstallAs function multiple times, or as a shorthand, you can
supply same-length lists for the both the target and source arguments:

env = Environment()
hello = env.Program(’hello.c’)
goodbye = env.Program(’goodbye.c’)
env.InstallAs([’/usr/bin/hello-new’,

’/usr/bin/goodbye-new’],
[hello, goodbye])

env.Alias(’install’, ’/usr/bin’)

In this case, the InstallAs function loops through both lists simultaneously, and
copies each source file into its corresponding target file name:

% scons -Q install
cc -o goodbye.o -c goodbye.c
cc -o goodbye goodbye.o
Install file: "goodbye" as "/usr/bin/goodbye-new"
cc -o hello.o -c hello.c

60

Chapter 11. Installing Files in Other Directories: the Install Builder

cc -o hello hello.o
Install file: "hello" as "/usr/bin/hello-new"

61

Chapter 11. Installing Files in Other Directories: the Install Builder

62

Chapter 12. Platform-Independent File System Manipulation

SCons provides a number of platform-independent functions, called factories , that
perform common file system manipulations like copying, moving or deleting files
and directories, or making directories. These functions are factories because they
don’t perform the action at the time they’re called, they each return an Action object
that can be executed at the appropriate time.

Copying Files or Directories: The Copy Factory
Suppose you want to arrange to make a copy of a file, and the Install builder isn’t
appropriate because it may make a hard link on POSIX systems. One way would be
to use the Copy action factory in conjunction with the Commandbuilder:

Command("file.out", "file.in", Copy("$TARGET", "$SOURCE"))

Notice that the action returned by the Copy factory will expand the $TARGET and
$SOURCE strings at the time file.out is built, and that the order of the arguments
is the same as that of a builder itself--that is, target first, followed by source:

% scons -Q
Copy("file.out", "file.in")

You can, of course, name a file explicitly instead of using $TARGET or $SOURCE:

Command("file.out", [], Copy("$TARGET", "file.in"))

Which executes as:

% scons -Q
Copy("file.out", "file.in")

The usefulness of the Copy factory becomes more apparent when you use it in a list of
actions passed to the Commandbuilder. For example, suppose you needed to run a file
through a utility that only modifies files in-place, and can’t "pipe" input to output.
One solution is to copy the source file to a temporary file name, run the utility, and
then copy the modified temporary file to the target, which the Copy factory makes
extremely easy:

Command("file.out", "file.in",
[

Copy("tempfile", "$SOURCE"),
"modify tempfile",
Copy("$TARGET", "tempfile"),

])

The output then looks like:

% scons -Q
Copy("tempfile", "file.in")
modify tempfile
Copy("file.out", "tempfile")

63

Chapter 12. Platform-Independent File System Manipulation

Deleting Files or Directories: The Delete Factory
If you need to delete a file, then the Delete factory can be used in much the same
way as the Copy factory. For example, if we want to make sure that the temporary
file in our last example doesn’t exist before we copy to it, we could add Delete to the
beginning of the command list:

Command("file.out", "file.in",
[

Delete("tempfile"),
Copy("tempfile", "$SOURCE"),
"modify tempfile",
Copy("$TARGET", "tempfile"),

])

When then executes as follows:

% scons -Q
Delete("tempfile")
Copy("tempfile", "file.in")
modify tempfile
Copy("file.out", "tempfile")

Of course, like all of these Action factories, the Delete factory also expands $TAR-
GET and $SOURCE variables appropriately. For example:

Command("file.out", "file.in",
[

Delete("$TARGET"),
Copy("$TARGET", "$SOURCE")

])

Executes as:

% scons -Q
Delete("file.out")
Copy("file.out", "file.in")

(Note, however, that you typically don’t need to call the Delete factory explicitly in
this way; by default, SCons deletes its target(s) for you before executing any action.

Moving (Renaming) Files or Directories: The Move Factory
The Move factory allows you to rename a file or directory. For example, if we don’t
want to copy the temporary file, we could:

Command("file.out", "file.in",
[

Copy("tempfile", "$SOURCE"),
"modify tempfile",
Move("$TARGET", "tempfile"),

])

Which would execute as:

% scons -Q
Copy("tempfile", "file.in")
modify tempfile

64

Chapter 12. Platform-Independent File System Manipulation

Move("file.out", "tempfile")

Updating the Modification Time of a File: The Touch Factory
If you just need to update the recorded modification time for a file, use the Touch
factory:

Command("file.out", "file.in",
[

Copy("tempfile", "$SOURCE"),
"modify tempfile",
Move("$TARGET", "tempfile"),

])

Which executes as:

% scons -Q
Copy("tempfile", "file.in")
modify tempfile
Move("file.out", "tempfile")

Creating a Directory: The Mkdir Factory
If you need to create a directory, use the Mkdir factory. For example, if we need to
process a file in a temporary directory in which the processing tool will create other
files that we don’t care about, you could:

Command("file.out", "file.in",
[

Delete("tempdir"),
Mkdir("tempdir"),
Copy("tempdir/${SOURCE.file}", "$SOURCE"),
"process tempdir",
Move("$TARGET", "tempdir/output_file"),
Delete("tempdir"),

])

Which executes as:

% scons -Q
Delete("tempdir")
Mkdir("tempdir")
Copy("tempdir/file.in", "file.in")
process tempdir
Move("file.out", "tempdir/output_file")
scons: *** [file.out] No such file or directory

Changing File or Directory Permissions: The ChmodFactory
To change permissions on a file or directory, use the Chmod factory. The permission
argument uses POSIX-style permission bits and should typically be expressed as an
octal, not decimal, number:

65

Chapter 12. Platform-Independent File System Manipulation

Command("file.out", "file.in",
[

Copy("$TARGET", "$SOURCE"),
Chmod("$TARGET", 0755),

])

Which executes:

% scons -Q
Copy("file.out", "file.in")
Chmod("file.out", 0755)

Executing an action immediately: the Execute Function
We’ve been showing you how to use Action factories in the Commandfunction. You
can also execute an Action returned by a factory (or actually, any Action) at the time
the SConscript file is read by wrapping it up in the Execute function. For example,
if we need to make sure that a directory exists before we build any targets,

Execute(Mkdir(’/tmp/my_temp_directory’))

Notice that this will create the directory while the SConscript file is being read:

% scons
scons: Reading SConscript files ...
Mkdir("/tmp/my_temp_directory")
scons: done reading SConscript files.
scons: Building targets ...
scons: ‘.’ is up to date.
scons: done building targets.

If you’re familiar with Python, you may wonder why you would want to use this
instead of just calling the native Python os.mkdir() function. The advantage here is
that the Mkdir action will behave appropriately if the user specifies the SCons -n or
-q options--that is, it will print the action but not actually make the directory when
-n is specified, or make the directory but not print the action when -q is specified.

66

Chapter 13. Preventing Removal of Targets

There are two occasions when SCons will, by default, remove target files. The first is
when SCons determines that an target file needs to be rebuilt and removes the exist-
ing version of the target before executing The second is when SCons is invoked with
the -c option to "clean" a tree of its built targets. These behaviours can be suppressed
with the Precious and NoClean functions, respectively.

Preventing target removal during build: the Precious Function
By default, SCons removes targets before building them. Sometimes, however, this is
not what you want. For example, you may want to update a library incrementally,
not by having it deleted and then rebuilt from all of the constituent object files. In
such cases, you can use the Precious method to prevent SCons from removing the
target before it is built:

env = Environment(RANLIBCOM=”)
lib = env.Library(’foo’, [’f1.c’, ’f2.c’, ’f3.c’])
env.Precious(lib)

Although the output doesn’t look any different, SCons does not, in fact, delete the
target library before rebuilding it:

% scons -Q
cc -o f1.o -c f1.c
cc -o f2.o -c f2.c
cc -o f3.o -c f3.c
ar rc libfoo.a f1.o f2.o f3.o

SCons will, however, still delete files marked as Precious when the -c option is used.

Preventing target removal during clean: the NoClean Function
By default, SCons removes all built targets when invoked with the -c option to clean
a source tree of built tragets. Sometimes, however, this is not what you want. For
example, you may want to remove only intermediate generated files (such as object
files), but leave the final targets (the libraries) untouched. In such cases, you can use
the NoClean method to prevent SCons from removing a target during a clean:

env = Environment(RANLIBCOM=”)
lib = env.Library(’foo’, [’f1.c’, ’f2.c’, ’f3.c’])
env.NoClean(lib)

Notice that the libfoo.a is not listed as a removed file:

% scons -Q
cc -o f1.o -c f1.c
cc -o f2.o -c f2.c
cc -o f3.o -c f3.c
ar rc libfoo.a f1.o f2.o f3.o
% scons -c
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Cleaning targets ...
Removed f1.o
Removed f2.o
Removed f3.o
scons: done cleaning targets.

67

Chapter 13. Preventing Removal of Targets

68

Chapter 14. Hierarchical Builds

The source code for large software projects rarely stays in a single directory, but is
nearly always divided into a hierarchy of directories. Organizing a large software
build using SCons involves creating a hierarchy of build scripts using the SConscript
function.

SConscript Files
As we’ve already seen, the build script at the top of the tree is called SConstruct .
The top-level SConstruct file can use the SConscript function to include other sub-
sidiary scripts in the build. These subsidiary scripts can, in turn, use the SConscript
function to include still other scripts in the build. By convention, these subsidiary
scripts are usually named SConscript . For example, a top-level SConstruct file
might arrange for four subsidiary scripts to be included in the build as follows:

SConscript([’drivers/display/SConscript’,
’drivers/mouse/SConscript’,
’parser/SConscript’,
’utilities/SConscript’])

In this case, the SConstruct file lists all of the SConscript files in the build
explicitly. (Note, however, that not every directory in the tree necessarily has
an SConscript file.) Alternatively, the drivers subdirectory might contain an
intermediate SConscript file, in which case the SConscript call in the top-level
SConstruct file would look like:

SConscript([’drivers/SConscript’,
’parser/SConscript’,
’utilities/SConscript’])

And the subsidiary SConscript file in the drivers subdirectory would look like:

SConscript([’display/SConscript’,
’mouse/SConscript’])

Whether you list all of the SConscript files in the top-level SConstruct file, or place
a subsidiary SConscript file in intervening directories, or use some mix of the two
schemes, is up to you and the needs of your software.

Path Names Are Relative to the SConscript Directory
Subsidiary SConscript files make it easy to create a build hierarchy because all of
the file and directory names in a subsidiary SConscript files are interpreted rela-
tive to the directory in which the SConscript file lives. Typically, this allows the
SConscript file containing the instructions to build a target file to live in the same
directory as the source files from which the target will be built, making it easy to up-
date how the software is built whenever files are added or deleted (or other changes
are made).

For example, suppose we want to build two programs prog1 and prog2 in two sep-
arate directories with the same names as the programs. One typical way to do this
would be with a top-level SConstruct file like this:

SConscript([’prog1/SConscript’,
’prog2/SConscript’])

69

Chapter 14. Hierarchical Builds

And subsidiary SConscript files that look like this:

env = Environment()
env.Program(’prog1’, [’main.c’, ’foo1.c’, ’foo2.c’])

And this:

env = Environment()
env.Program(’prog2’, [’main.c’, ’bar1.c’, ’bar2.c’])

Then, when we run SCons in the top-level directory, our build looks like:

% scons -Q
cc -o prog1/foo1.o -c prog1/foo1.c
cc -o prog1/foo2.o -c prog1/foo2.c
cc -o prog1/main.o -c prog1/main.c
cc -o prog1/prog1 prog1/main.o prog1/foo1.o prog1/foo2.o
cc -o prog2/bar1.o -c prog2/bar1.c
cc -o prog2/bar2.o -c prog2/bar2.c
cc -o prog2/main.o -c prog2/main.c
cc -o prog2/prog2 prog2/main.o prog2/bar1.o prog2/bar2.o

Notice the following: First, you can have files with the same names in multiple di-
rectories, like main.c in the above example. Second, unlike standard recursive use of
Make, SCons stays in the top-level directory (where the SConstruct file lives) and
issues commands that use the path names from the top-level directory to the target
and source files within the hierarchy.

Top-Level Path Names in Subsidiary SConscript Files
If you need to use a file from another directory, it’s sometimes more convenient to
specify the path to a file in another directory from the top-level SConstruct directory,
even when you’re using that file in a subsidiary SConscript file in a subdirectory.
You can tell SCons to interpret a path name as relative to the top-level SConstruct
directory, not the local directory of the SConscript file, by appending a # (hash mark)
to the beginning of the path name:

env = Environment()
env.Program(’prog’, [’main.c’, ’#lib/foo1.c’, ’foo2.c’])

In this example, the lib directory is directly underneath the top-level SConstruct di-
rectory. If the above SConscript file is in a subdirectory named src/prog , the output
would look like:

% scons -Q
cc -o lib/foo1.o -c lib/foo1.c
cc -o src/prog/foo2.o -c src/prog/foo2.c
cc -o src/prog/main.o -c src/prog/main.c
cc -o src/prog/prog src/prog/main.o lib/foo1.o src/prog/foo2.o

(Notice that the lib/foo1.o object file is built in the same directory as its source file.
See Chapter 15, below, for information about how to build the object file in a different
subdirectory.)

70

Chapter 14. Hierarchical Builds

Absolute Path Names
Of course, you can always specify an absolute path name for a file--for example:

env = Environment()
env.Program(’prog’, [’main.c’, ’/usr/joe/lib/foo1.c’, ’foo2.c’])

Which, when executed, would yield:

% scons -Q
cc -o src/prog/foo2.o -c src/prog/foo2.c
cc -o src/prog/main.o -c src/prog/main.c
cc -o /usr/joe/lib/foo1.o -c /usr/joe/lib/foo1.c
cc -o src/prog/prog src/prog/main.o /usr/joe/lib/foo1.o src/prog/foo2.o

(As was the case with top-relative path names, notice that the /usr/joe/lib/foo1.o
object file is built in the same directory as its source file. See Chapter 15, below, for
information about how to build the object file in a different subdirectory.)

Sharing Environments (and Other Variables) Between SConscript
Files

In the previous example, each of the subsidiary SConscript files created its own con-
struction environment by calling Environment separately. This obviously works fine,
but if each program must be built with the same construction variables, it’s cumber-
some and error-prone to initialize separate construction environments in the same
way over and over in each subsidiary SConscript file.

SCons supports the ability to export variables from a parent SConscript file to its
subsidiary SConscript files, which allows you to share common initialized values
throughout your build hierarchy.

Exporting Variables
There are two ways to export a variable, such as a construction environment, from an
SConscript file, so that it may be used by other SConscript files. First, you can call
the Export function with a list of variables, or a string white-space separated variable
names. Each call to Export adds one or more variables to a global list of variables that
are available for import by other SConscript files.

env = Environment()
Export(’env’)

You may export more than one variable name at a time:

env = Environment()
debug = ARGUMENTS[’debug’]
Export(’env’, ’debug’)

Because white space is not legal in Python variable names, the Export function will
even automatically split a string into separate names for you:

Export(’env debug’)

Second, you can specify a list of variables to export as a second argument to the
SConscript function call:

71

Chapter 14. Hierarchical Builds

SConscript(’src/SConscript’, ’env’)

Or as the exports keyword argument:

SConscript(’src/SConscript’, exports=’env’)

These calls export the specified variables to only the listed SConscript files. You may,
however, specify more than one SConscript file in a list:

SConscript([’src1/SConscript’,
’src2/SConscript’], exports=’env’)

This is functionally equivalent to calling the SConscript function multiple times
with the same exports argument, one per SConscript file.

Importing Variables
Once a variable has been exported from a calling SConscript file, it may be used in
other SConscript files by calling the Import function:

Import(’env’)
env.Program(’prog’, [’prog.c’])

The Import call makes the env construction environment available to the
SConscript file, after which the variable can be used to build programs, libraries,
etc.

Like the Export function, the Import function can be used with multiple variable
names:

Import(’env’, ’debug’)
env = env.Clone(DEBUG = debug)
env.Program(’prog’, [’prog.c’])

And the Import function will similarly split a string along white-space into separate
variable names:

Import(’env debug’)
env = env.Clone(DEBUG = debug)
env.Program(’prog’, [’prog.c’])

Lastly, as a special case, you may import all of the variables that have been exported
by supplying an asterisk to the Import function:

Import(’*’)
env = env.Clone(DEBUG = debug)
env.Program(’prog’, [’prog.c’])

If you’re dealing with a lot of SConscript files, this can be a lot simpler than keeping
arbitrary lists of imported variables in each file.

72

Chapter 14. Hierarchical Builds

Returning Values From an SConscript File
Sometimes, you would like to be able to use information from a subsidiary
SConscript file in some way. For example, suppose that you want to create one
library from source files scattered throughout a number of subsidiary SConscript
files. You can do this by using the Return function to return values from the
subsidiary SConscript files to the calling file.

If, for example, we have two subdirectories foo and bar that should each contribute
a source file to a Library, what we’d like to be able to do is collect the object files from
the subsidiary SConscript calls like this:

env = Environment()
Export(’env’)
objs = []
for subdir in [’foo’, ’bar’]:

o = SConscript(’%s/SConscript’ % subdir)
objs.append(o)

env.Library(’prog’, objs)

We can do this by using the Return function in the foo/SConscript file like this:

Import(’env’)
obj = env.Object(’foo.c’)
Return(’obj’)

(The corresponding bar/SConscript file should be pretty obvious.) Then when we
run SCons, the object files from the subsidiary subdirectories are all correctly archived
in the desired library:

% scons -Q
cc -o bar/bar.o -c bar/bar.c
cc -o foo/foo.o -c foo/foo.c
ar rc libprog.a foo/foo.o bar/bar.o
ranlib libprog.a

73

Chapter 14. Hierarchical Builds

74

Chapter 15. Separating Source and Build Directories

It’s often useful to keep any built files completely separate from the source files. This
is usually done by creating one or more separate build directories that are used to hold
the built objects files, libraries, and executable programs, etc. for a specific flavor of
build. SCons provides two ways to do this, one through the SConscript function that
we’ve already seen, and the second through a more flexible BuildDir function.

Specifying a Build Directory as Part of an SConscript Call
The most straightforward way to establish a build directory uses the fact that the
usual way to set up a build hierarchy is to have an SConscript file in the source
subdirectory. If you then pass a build_dir argument to the SConscript function
call:

SConscript(’src/SConscript’, build_dir=’build’)

SCons will then build all of the files in the build subdirectory:

% ls src
SConscript hello.c
% scons -Q
cc -o build/hello.o -c build/hello.c
cc -o build/hello build/hello.o
% ls build
SConscript hello hello.c hello.o

But wait a minute--what’s going on here? SCons created the object file
build/hello.o in the build subdirectory, as expected. But even though our
hello.c file lives in the src subdirectory, SCons has actually compiled a
build/hello.c file to create the object file.

What’s happened is that SCons has duplicated the hello.c file from the src subdi-
rectory to the build subdirectory, and built the program from there. The next section
explains why SCons does this.

Why SCons Duplicates Source Files in a Build Directory
SCons duplicates source files in build directories because it’s the most straightfor-
ward way to guarantee a correct build regardless of include-file directory paths, relative
references between files, or tool support for putting files in different locations, and the SCons
philosophy is to, by default, guarantee a correct build in all cases.

The most direct reason to duplicate source files in build directories is simply that
some tools (mostly older vesions) are written to only build their output files in the
same directory as the source files. In this case, the choices are either to build the
output file in the source directory and move it to the build directory, or to duplicate
the source files in the build directory.

Additionally, relative references between files can cause problems if we don’t just
duplicate the hierarchy of source files in the build directory. You can see this at work
in use of the C preprocessor #include mechanism with double quotes, not angle
brackets:

#include "file.h"

The de facto standard behavior for most C compilers in this case is to first look in the
same directory as the source file that contains the #include line, then to look in the

75

Chapter 15. Separating Source and Build Directories

directories in the preprocessor search path. Add to this that the SCons implementa-
tion of support for code repositories (described below) means not all of the files will
be found in the same directory hierarchy, and the simplest way to make sure that
the right include file is found is to duplicate the source files into the build directory,
which provides a correct build regardless of the original location(s) of the source files.

Although source-file duplication guarantees a correct build even in these end-cases,
it can usually be safely disabled. The next section describes how you can disable the
duplication of source files in the build directory.

Telling SCons to Not Duplicate Source Files in the Build Directory
In most cases and with most tool sets, SCons can place its target files in a build sub-
directory without duplicating the source files and everything will work just fine. You
can disable the default SCons behavior by specifying duplicate=0 when you call the
SConscript function:

SConscript(’src/SConscript’, build_dir=’build’, duplicate=0)

When this flag is specified, SCons uses the build directory like most people expect--
that is, the output files are placed in the build directory while the source files stay in
the source directory:

% ls src
SConscript
hello.c
% scons -Q
cc -c src/hello.c -o build/hello.o
cc -o build/hello build/hello.o
% ls build
hello
hello.o

The BuildDir Function
Use the BuildDir function to establish that target files should be built in a separate
directory from the source files:

BuildDir(’build’, ’src’)
env = Environment()
env.Program(’build/hello.c’)

Note that when you’re not using an SConscript file in the src subdirectory, you
must actually specify that the program must be built from the build/hello.c file
that SCons will duplicate in the build subdirectory.

When using the BuildDir function directly, SCons still duplicates the source files in
the build directory by default:

% ls src
hello.c
% scons -Q
cc -o build/hello.o -c build/hello.c
cc -o build/hello build/hello.o
% ls build
hello hello.c hello.o

76

Chapter 15. Separating Source and Build Directories

You can specify the same duplicate=0 argument that you can specify for an
SConscript call:

BuildDir(’build’, ’src’, duplicate=0)
env = Environment()
env.Program(’build/hello.c’)

In which case SCons will disable duplication of the source files:

% ls src
hello.c
% scons -Q
cc -o build/hello.o -c src/hello.c
cc -o build/hello build/hello.o
% ls build
hello hello.o

Using BuildDir With an SConscript File
Even when using the BuildDir function, it’s much more natural to use it with a
subsidiary SConscript file. For example, if the src/SConscript looks like this:

env = Environment()
env.Program(’hello.c’)

Then our SConstruct file could look like:

BuildDir(’build’, ’src’)
SConscript(’build/SConscript’)

Yielding the following output:

% ls src
SConscript hello.c
% scons -Q
cc -o build/hello.o -c build/hello.c
cc -o build/hello build/hello.o
% ls build
SConscript hello hello.c hello.o

Notice that this is completely equivalent to the use of SConscript that we learned
about in the previous section.

77

Chapter 15. Separating Source and Build Directories

78

Chapter 16. Variant Builds

The build_dir keyword argument of the SConscript function provides everything
we need to show how easy it is to create variant builds using SCons. Suppose, for
example, that we want to build a program for both Windows and Linux platforms,
but that we want to build it in a shared directory with separate side-by-side build
directories for the Windows and Linux versions of the program.

platform = ARGUMENTS.get(’OS’, Platform())

include = "#export/$PLATFORM/include"
lib = "#export/$PLATFORM/lib"
bin = "#export/$PLATFORM/bin"

env = Environment(PLATFORM = platform,
BINDIR = bin,
INCDIR = include,
LIBDIR = lib,
CPPPATH = [include],
LIBPATH = [lib],
LIBS = ’world’)

Export(’env’)

env.SConscript(’src/SConscript’, build_dir=’build/$PLATFORM’)

This SConstruct file, when run on a Linux system, yields:

% scons -Q OS=linux
Install file: "build/linux/world/world.h" as "export/linux/include/world.h"
cc -o build/linux/hello/hello.o -c -Iexport/linux/include build/linux/hello/hello.c
cc -o build/linux/world/world.o -c -Iexport/linux/include build/linux/world/world.c
ar rc build/linux/world/libworld.a build/linux/world/world.o
ranlib build/linux/world/libworld.a
Install file: "build/linux/world/libworld.a" as "export/linux/lib/libworld.a"
cc -o build/linux/hello/hello build/linux/hello/hello.o -Lexport/linux/lib -lworld
Install file: "build/linux/hello/hello" as "export/linux/bin/hello"

The same SConstruct file on Windows would build:

C:\> scons -Q OS=windows
Install file: "build/windows/world/world.h" as "export/windows/include/world.h"
cl /nologo /Iexport\windows\include /c build\windows\hello\hello.c /Fobuild\windows\hello\hello.obj
cl /nologo /Iexport\windows\include /c build\windows\world\world.c /Fobuild\windows\world\world.obj
lib /nologo /OUT:build\windows\world\world.lib build\windows\world\world.obj
Install file: "build/windows/world/world.lib" as "export/windows/lib/world.lib"
link /nologo /OUT:build\windows\hello\hello.exe /LIBPATH:export\windows\lib world.lib build\windows\hello\hello.obj
Install file: "build/windows/hello/hello.exe" as "export/windows/bin/hello.exe"

79

Chapter 16. Variant Builds

80

Chapter 17. Writing Your Own Builders

Although SCons provides many useful methods for building common software prod-
ucts: programs, libraries, documents. you frequently want to be able to build some
other type of file not supported directly by SCons Fortunately, SCons makes it very
easy to define your own Builder objects for any custom file types you want to build.
(In fact, the SCons interfaces for creating Builder objects are flexible enough and
easy enough to use that all of the the SCons built-in Builder objects are created the
mechanisms described in this section.)

Writing Builders That Execute External Commands
The simplest Builder to create is one that executes an external command. For ex-
ample, if we want to build an output file by running the contents of the input file
through a command named foobuild , creating that Builder might look like:

bld = Builder(action = ’foobuild < $SOURCE > $TARGET’)

All the above line does is create a free-standing Builder object. The next section will
show us how to actually use it.

Attaching a Builder to a Construction Environment

A Builder object isn’t useful until it’s attached to a construction environment so
that we can call it to arrange for files to be built. This is done through the $BUILDERS
construction variable in an environment. The $BUILDERS variable is a Python
dictionary that maps the names by which you want to call various Builder objects to
the objects themselves. For example, if we want to call the Builder we just defined
by the name Foo, our SConstruct file might look like:

bld = Builder(action = ’foobuild < $SOURCE > $TARGET’)
env = Environment(BUILDERS = {’Foo’ : bld})

With the Builder so attached to our construction environment we can now actu-
ally call it like so:

env.Foo(’file.foo’, ’file.input’)

Then when we run SCons it looks like:

% scons -Q
foobuild < file.input > file.foo

Note, however, that the default $BUILDERS variable in a construction
environment comes with a default set of Builder objects already defined: Program ,
Library , etc. And when we explicitly set the $BUILDERS variable when we create
the construction environment , the default Builder s are no longer part of the
environment:

bld = Builder(action = ’foobuild < $SOURCE> $TARGET’)
env = Environment(BUILDERS = {’Foo’ : bld})
env.Foo(’file.foo’, ’file.input’)
env.Program(’hello.c’)

% scons -Q

81

Chapter 17. Writing Your Own Builders

AttributeError: ’SConsEnvironment’ object has no attribute ’Program’:
File "SConstruct", line 4:

env.Program(’hello.c’)

To be able use both our own defined Builder objects and the default Builder objects
in the same construction environment , you can either add to the $BUILDERS vari-
able using the Append function:

env = Environment()
bld = Builder(action = ’foobuild < $SOURCE > $TARGET’)
env.Append(BUILDERS = {’Foo’ : bld})
env.Foo(’file.foo’, ’file.input’)
env.Program(’hello.c’)

Or you can explicitly set the appropriately-named key in the $BUILDERS dictionary:

env = Environment()
bld = Builder(action = ’foobuild < $SOURCE > $TARGET’)
env[’BUILDERS’][’Foo’] = bld
env.Foo(’file.foo’, ’file.input’)
env.Program(’hello.c’)

Either way, the same construction environment can then use both the newly-
defined Foo Builder and the default Program Builder :

% scons -Q
foobuild < file.input > file.foo
cc -o hello.o -c hello.c
cc -o hello hello.o

Letting SCons Handle The File Suffixes
By supplying additional information when you create a Builder , you can let SCons
add appropriate file suffixes to the target and/or the source file. For example, rather
than having to specify explicitly that you want the Foo Builder to build the
file.foo target file from the file.input source file, you can give the .foo and
.input suffixes to the Builder , making for more compact and readable calls to the
Foo Builder :

bld = Builder(action = ’foobuild < $SOURCE > $TARGET’,
suffix = ’.foo’,
src_suffix = ’.input’)

env = Environment(BUILDERS = {’Foo’ : bld})
env.Foo(’file1’)
env.Foo(’file2’)

% scons -Q
foobuild < file1.input > file1.foo
foobuild < file2.input > file2.foo

You can also supply a prefix keyword argument if it’s appropriate to have SCons
append a prefix to the beginning of target file names.

82

Chapter 17. Writing Your Own Builders

Builders That Execute Python Functions
In SCons, you don’t have to call an external command to build a file. You can, instead,
define a Python function that a Builder object can invoke to build your target file (or
files). Such a builder function definition looks like:

def build_function(target, source, env):
Code to build "target" from "source"
return None

The arguments of a builder function are:

target

A list of Node objects representing the target or targets to be built by this builder
function. The file names of these target(s) may be extracted using the Python str
function.

source

A list of Node objects representing the sources to be used by this builder function
to build the targets. The file names of these source(s) may be extracted using the
Python str function.

env

The construction environment used for building the target(s). The builder
function may use any of the environment’s construction variables in any way
to affect how it builds the targets.

The builder function must return a 0 or None value if the target(s) are built success-
fully. The builder function may raise an exception or return any non-zero value to
indicate that the build is unsuccessful,

Once you’ve defined the Python function that will build your target file, defining a
Builder object for it is as simple as specifying the name of the function, instead of an
external command, as the Builder ’s action argument:

def build_function(target, source, env):
Code to build "target" from "source"
return None

bld = Builder(action = build_function,
suffix = ’.foo’,
src_suffix = ’.input’)

env = Environment(BUILDERS = {’Foo’ : bld})
env.Foo(’file’)

And notice that the output changes slightly, reflecting the fact that a Python function,
not an external command, is now called to build the target file:

% scons -Q
build_function(["file.foo"], ["file.input"])

Builders That Create Actions Using a Generator

SCons Builder objects can create an action "on the fly" by using a function called a
generator . This provides a great deal of flexibility to construct just the right list of
commands to build your target. A generator looks like:

def generate_actions(source, target, env, for_signature):

83

Chapter 17. Writing Your Own Builders

return ’foobuild < %s > %s’ % (target[0], source[0])

The arguments of a generator are:

source

A list of Node objects representing the sources to be built by the command or
other action generated by this function. The file names of these source(s) may be
extracted using the Python str function.

target

A list of Node objects representing the target or targets to be built by the com-
mand or other action generated by this function. The file names of these target(s)
may be extracted using the Python str function.

env

The construction environment used for building the target(s). The generator
may use any of the environment’s construction variables in any way to deter-
mine what command or other action to return.

for_signature

A flag that specifies whether the generator is being called to contribute to a build
signature, as opposed to actually executing the command.

The generator must return a command string or other action that will be used to
build the specified target(s) from the specified source(s).

Once you’ve defined a generator , you create a Builder to use it by specifying the
generator keyword argument instead of action .

def generate_actions(source, target, env, for_signature):
return ’foobuild < %s > %s’ % (source[0], target[0])

bld = Builder(generator = generate_actions,
suffix = ’.foo’,
src_suffix = ’.input’)

env = Environment(BUILDERS = {’Foo’ : bld})
env.Foo(’file’)

% scons -Q
foobuild < file.input > file.foo

Note that it’s illegal to specify both an action and a generator for a Builder .

Builders That Modify the Target or Source Lists Using an Emitter

SCons supports the ability for a Builder to modify the lists of target(s) from the spec-
ified source(s).

def modify_targets(target, source, env):
target.append(’new_target’)
source.append(’new_source’)
return target, source

bld = Builder(action = ’foobuild $TARGETS - $SOURCES’,
suffix = ’.foo’,
src_suffix = ’.input’,
emitter = modify_targets)

env = Environment(BUILDERS = {’Foo’ : bld})
env.Foo(’file’)

84

Chapter 17. Writing Your Own Builders

% scons -Q
foobuild file.foo new_target - file.input new_source

bld = Builder(action = ’XXX’,
suffix = ’.foo’,
src_suffix = ’.input’,
emitter = ’MY_EMITTER’)

def modify1(target, source, env):
return target, source

def modify2(target, source, env):
return target, source

env1 = Environment(BUILDERS = {’Foo’ : bld},
MY_EMITTER = modify1)

env2 = Environment(BUILDERS = {’Foo’ : bld},
MY_EMITTER = modify2)

env1.Foo(’file1’)
env2.Foo(’file2’)

85

Chapter 17. Writing Your Own Builders

86

Chapter 18. Not Writing a Builder: the CommandBuilder

Creating a Builder and attaching it to a construction environment allows for a lot
of flexibility when you want to re-use actions to build multiple files of the same type.
This can, however, be cumbersome if you only need to execute one specific command
to build a single file (or group of files). For these situations, SCons supports a Command
Builder that arranges for a specific action to be executed to build a specific file or
files. This looks a lot like the other builders (like Program , Object , etc.), but takes as
an additional argument the command to be executed to build the file:

env = Environment()
env.Command(’foo.out’, ’foo.in’, "sed ’s/x/y/’ < $SOURCE> $TARGET")

% scons -Q
sed ’s/x/y/’ < foo.in > foo.out

This is often more convenient than creating a Builder object and adding it to the
$BUILDERS variable of a construction environment

Note that the action you

env = Environment()
def build(target, source, env):

Whatever it takes to build
return None

env.Command(’foo.out’, ’foo.in’, build)

% scons -Q
build(["foo.out"], ["foo.in"])

87

Chapter 18. Not Writing a Builder: the CommandBuilder

88

Chapter 19. Writing Scanners

SCons has built-in scanners that know how to look in C, Fortran and IDL source files
for information about other files that targets built from those files depend on--for
example, in the case of files that use the C preprocessor, the .h files that are specified
using #include lines in the source. You can use the same mechanisms that SCons
uses to create its built-in scanners to write scanners of your own for file types that
SCons does not know how to scan "out of the box."

A Simple Scanner Example
Suppose, for example, that we want to create a simple scanner for .foo files. A .foo
file contains some text that will be processed, and can include other files on lines that
begin with include followed by a file name:

include filename.foo

Scanning a file will be handled by a Python function that you must supply. Here is
a function that will use the Python re module to scan for the include lines in our
example:

import re

include_re = re.compile(r’^include\s+(\S+)$’, re.M)

def kfile_scan(node, env, path, arg):
contents = node.get_contents()
return include_re.findall(contents)

The scanner function must accept the four specified arguments and return a list of
implicit dependencies. Presumably, these would be dependencies found from exam-
ining the contents of the file, although the function can perform any manipulation at
all to generate the list of dependencies.

node

An SCons node object representing the file being scanned. The path name to the
file can be used by converting the node to a string using the str() function, or an
internal SCons get_contents() object method can be used to fetch the contents.

env

The construction environment in effect for this scan. The scanner function may
choose to use construction variables from this environment to affect its behavior.

path

A list of directories that form the search path for included files for this scanner.
This is how SCons handles the $CPPPATH and $LIBPATH variables.

arg

An optional argument that you can choose to have passed to this scanner func-
tion by various scanner instances.

A Scanner object is created using the Scanner function, which typically takes an
skeys argument to associate the type of file suffix with this scanner. The Scanner
object must then be associated with the $SCANNERS construction variable of a con-
struction environment, typically by using the Append method:

kscan = Scanner(function = kfile_scan,

89

Chapter 19. Writing Scanners

skeys = [’.k’])
env.Append(SCANNERS = kscan)

When we put it all together, it looks like:

import re

include_re = re.compile(r’^include\s+(\S+)$’, re.M)

def kfile_scan(node, env, path):
contents = node.get_contents()
includes = include_re.findall(contents)
return includes

kscan = Scanner(function = kfile_scan,
skeys = [’.k’])

env = Environment(ENV = {’PATH’ : ’/usr/local/bin’})
env.Append(SCANNERS = kscan)

env.Command(’foo’, ’foo.k’, ’kprocess < $SOURCES> $TARGET’)

90

Chapter 20. Building From Code Repositories

Often, a software project will have one or more central repositories, directory trees
that contain source code, or derived files, or both. You can eliminate additional un-
necessary rebuilds of files by having SCons use files from one or more code reposito-
ries to build files in your local build tree.

The Repository Method
It’s often useful to allow multiple programmers working on a project to build soft-
ware from source files and/or derived files that are stored in a centrally-accessible
repository, a directory copy of the source code tree. (Note that this is not the sort of
repository maintained by a source code management system like BitKeeper, CVS, or
Subversion.) You use the Repository method to tell SCons to search one or more
central code repositories (in order) for any source files and derived files that are not
present in the local build tree:

env = Environment()
env.Program(’hello.c’)
Repository(’/usr/repository1’, ’/usr/repository2’)

Multiple calls to the Repository method will simply add repositories to the global
list that SCons maintains, with the exception that SCons will automatically eliminate
the current directory and any non-existent directories from the list.

Finding source files in repositories
The above example specifies that SCons will first search for files under the
/usr/repository1 tree and next under the /usr/repository2 tree. SCons expects
that any files it searches for will be found in the same position relative to the
top-level directory. In the above example, if the hello.c file is not found in the local
build tree, SCons will search first for a /usr/repository1/hello.c file and then for
a /usr/repository1/hello.c file to use in its place.

So given the SConstruct file above, if the hello.c file exists in the local build direc-
tory, SCons will rebuild the hello program as normal:

% scons -Q
cc -o hello.o -c hello.c
cc -o hello hello.o

If, however, there is no local hello.c file, but one exists in /usr/repository1 , SCons
will recompile the hello program from the source file it finds in the repository:

% scons -Q
cc -o hello.o -c /usr/repository1/hello.c
cc -o hello hello.o

And similarly, if there is no local hello.c file and no /usr/repository1/hello.c ,
but one exists in /usr/repository2 :

% scons -Q
cc -o hello.o -c /usr/repository2/hello.c
cc -o hello hello.o

91

Chapter 20. Building From Code Repositories

Finding #include files in repositories
We’ve already seen that SCons will scan the contents of a source file for #include file
names and realize that targets built from that source file also depend on the #include
file(s). For each directory in the $CPPPATH list, SCons will actually search the corre-
sponding directories in any repository trees and establish the correct dependencies
on any #include files that it finds in repository directory.

Unless the C compiler also knows about these directories in the repository trees,
though, it will be unable to find the #include files. If, for example, the hello.c file in
our previous example includes the hello .h; in its current directory, and the hello .h;
only exists in the repository:

% scons -Q
cc -o hello.o -c hello.c
hello.c:1: hello.h: No such file or directory

In order to inform the C compiler about the repositories, SCons will add appropriate
-I flags to the compilation commands for each directory in the $CPPPATH list. So if
we add the current directory to the construction environment $CPPPATH like so:

env = Environment(CPPPATH = [’.’])
env.Program(’hello.c’)
Repository(’/usr/repository1’)

Then re-executing SCons yields:

% scons -Q
cc -o hello.o -c -I. -I/usr/repository1 hello.c
cc -o hello hello.o

The order of the -I options replicates, for the C preprocessor, the same repository-
directory search path that SCons uses for its own dependency analysis. If there are
multiple repositories and multiple $CPPPATH directories, SCons will add the repos-
itory directories to the beginning of each $CPPPATH directory, rapidly multiplying
the number of -I flags. If, for example, the $CPPPATH contains three directories (and
shorter repository path names!):

env = Environment(CPPPATH = [’dir1’, ’dir2’, ’dir3’])
env.Program(’hello.c’)
Repository(’/r1’, ’/r2’)

Then we’ll end up with nine -I options on the command line, three (for each of the
$CPPPATH directories) times three (for the local directory plus the two repositories):

% scons -Q
cc -o hello.o -c -Idir1 -I/r1/dir1 -I/r2/dir1 -Idir2 -I/r1/dir2 -I/r2/dir2 -Idir3 -I/r1/dir3 -I/r2/dir3 hello.c
cc -o hello hello.o

Limitations on #include files in repositories
SCons relies on the C compiler’s -I options to control the order in which the prepro-
cessor will search the repository directories for #include files. This causes a problem,
however, with how the C preprocessor handles #include lines with the file name in-
cluded in double-quotes.

92

Chapter 20. Building From Code Repositories

As we’ve seen, SCons will compile the hello.c file from the repository if it doesn’t
exist in the local directory. If, however, the hello.c file in the repository contains a
#include line with the file name in double quotes:

#include "hello.h"
int
main(int argc, char *argv[])
{

printf(HELLO_MESSAGE);
return (0);

}

Then the C preprocessor will always use a hello.h file from the repository directory
first, even if there is a hello.h file in the local directory, despite the fact that the
command line specifies -I as the first option:

% scons -Q
cc -o hello.o -c -I. -I/usr/repository1 /usr/repository1/hello.c
cc -o hello hello.o

This behavior of the C preprocessor--always search for a #include file in double-
quotes first in the same directory as the source file, and only then search the -I --can
not, in general, be changed. In other words, it’s a limitation that must be lived with if
you want to use code repositories in this way. There are three ways you can possibly
work around this C preprocessor behavior:

1. Some modern versions of C compilers do have an option to disable or con-
trol this behavior. If so, add that option to $CFLAGS (or $CXXFLAGS or both)
in your construction environment(s). Make sure the option is used for all con-
struction environments that use C preprocessing!

2. Change all occurrences of #include "file.h" to #include <file.h >. Use of
#include with angle brackets does not have the same behavior--the -I directo-
ries are searched first for #include files--which gives SCons direct control over
the list of directories the C preprocessor will search.

3. Require that everyone working with compilation from repositories check out
and work on entire directories of files, not individual files. (If you use local
wrapper scripts around your source code control system’s command, you could
add logic to enforce this restriction there.

Finding the SConstruct file in repositories
SCons will also search in repositories for the SConstruct file and any specified
SConscript files. This poses a problem, though: how can SCons search a repository
tree for an SConstruct file if the SConstruct file itself contains the information
about the pathname of the repository? To solve this problem, SCons allows you to
specify repository directories on the command line using the -Y option:

% scons -Q -Y /usr/repository1 -Y /usr/repository2

When looking for source or derived files, SCons will first search the repositories
specified on the command line, and then search the repositories specified in the
SConstruct or SConscript files.

93

Chapter 20. Building From Code Repositories

Finding derived files in repositories
If a repository contains not only source files, but also derived files (such as object files,
libraries, or executables), SCons will perform its normal MD5 signature calculation to
decide if a derived file in a repository is up-to-date, or the derived file must be rebuilt
in the local build directory. For the SCons signature calculation to work correctly, a
repository tree must contain the .sconsign files that SCons uses to keep track of
signature information.

Usually, this would be done by a build integrator who would run SCons in the repos-
itory to create all of its derived files and .sconsign files, or who would SCons in a
separate build directory and copying the resulting tree to the desired repository:

% cd /usr/repository1
% scons -Q
cc -o file1.o -c file1.c
cc -o file2.o -c file2.c
cc -o hello.o -c hello.c
cc -o hello hello.o file1.o file2.o

(Note that this is safe even if the SConstruct file lists /usr/repository1 as a repos-
itory, because SCons will remove the current build directory from its repository list
for that invocation.)

Now, with the repository populated, we only need to create the one local source file
we’re interested in working with at the moment, and use the -Y option to tell SCons
to fetch any other files it needs from the repository:

% cd $HOME/build
% edit hello.c
% scons -Q -Y /usr/repository1
cc -c -o hello.o hello.c
cc -o hello hello.o /usr/repository1/file1.o /usr/repository1/file2.o

Notice that SCons realizes that it does not need to rebuild local copies file1.o and
file2.o files, but instead uses the already-compiled files from the repository.

Guaranteeing local copies of files
If the repository tree contains the complete results of a build, and we try to build from
the repository without any files in our local tree, something moderately surprising
happens:

% mkdir $HOME/build2
% cd $HOME/build2
% scons -Q -Y /usr/all/repository hello
scons: ‘hello’ is up-to-date.

Why does SCons say that the hello program is up-to-date when there is no hello
program in the local build directory? Because the repository (not the local directory)
contains the up-to-date hello program, and SCons correctly determines that nothing
needs to be done to rebuild that up-to-date copy of the file.

There are, however, many times when you want to ensure that a local copy of a file
always exists. A packaging or testing script, for example, may assume that certain
generated files exist locally. To tell SCons to make a copy of any up-to-date repository
file in the local build directory, use the Local function:

env = Environment()
hello = env.Program(’hello.c’)

94

Chapter 20. Building From Code Repositories

Local(hello)

If we then run the same command, SCons will make a local copy of the program from
the repository copy, and tell you that it is doing so:

% scons -Y /usr/all/repository hello
Local copy of hello from /usr/all/repository/hello
scons: ‘hello’ is up-to-date.

(Notice that, because the act of making the local copy is not considered a "build" of
the hello file, SCons still reports that it is up-to-date.)

95

Chapter 20. Building From Code Repositories

96

Chapter 21. Multi-Platform Configuration (Autoconf
Functionality)

SCons has integrated support for multi-platform build configuration similar to that
offered by GNU Autoconf , such as figuring out what libraries or header files are
available on the local system. This section describes how to use this SCons feature.

Note: This chapter is still under development, so not everything is explained as well as it
should be. See the SCons man page for additional information.

Configure Contexts

The basic framework for multi-platform build configuration in SCons is to attach a
configure context to a construction environment by calling the Configure func-
tion, perform a number of checks for libraries, functions, header files, etc., and to then
call the configure context’s Finish method to finish off the configuration:

env = Environment()
conf = Configure(env)
Checks for libraries, header files, etc. go here!
env = conf.Finish()

SCons provides a number of basic checks, as well as a mechanism for adding your
own custom checks.

Note that SCons uses its own dependency mechanism to determine when a check
needs to be run--that is, SCons does not run the checks every time it is invoked, but
caches the values returned by previous checks and uses the cached values unless
something has changed. This saves a tremendous amount of developer time while
working on cross-platform build issues.

The next sections describe the basic checks that SCons supports, as well as how to
add your own custom checks.

Checking for the Existence of Header Files
Testing the existence of a header file requires knowing what language the header file
is. A configure context has a CheckCHeader method that checks for the existence of a
C header file:

env = Environment()
conf = Configure(env)
if not conf.CheckCHeader(’math.h’):

print ’Math.h must be installed!’
Exit(1)

if conf.CheckCHeader(’foo.h’):
conf.env.Append(’-DHAS_FOO_H’)

env = conf.Finish()

Note that you can choose to terminate the build if a given header file doesn’t exist,
or you can modify the contstruction environment based on the existence of a header
file.

If you need to check for the existence a C++ header file, use the CheckCXXHeader
method:

env = Environment()

97

Chapter 21. Multi-Platform Configuration (Autoconf Functionality)

conf = Configure(env)
if not conf.CheckCXXHeader(’vector.h’):

print ’vector.h must be installed!’
Exit(1)

env = conf.Finish()

Checking for the Availability of a Function
Check for the availability of a specific function using the CheckFunc method:

env = Environment()
conf = Configure(env)
if not conf.CheckFunc(’strcpy’):

print ’Did not find strcpy(), using local version’
conf.env.Append(’-Dstrcpy=my_local_strcpy’)

env = conf.Finish()

Checking for the Availability of a Library
Check for the availability of a library using the CheckLib method. You only specify
the basename of the library, you don’t need to add a lib prefix or a .a or .lib suffix:

env = Environment()
conf = Configure(env)
if not conf.CheckLib(’m’):

print ’Did not find libm.a or m.lib, exiting!’
Exit(1)

env = conf.Finish()

Because the ability to use a library successfully often depends on having access to
a header file that describes the library’s interface, you can check for a library and a
header file at the same time by using the CheckLibWithHeader method:

env = Environment()
conf = Configure(env)
if not conf.CheckLibWithHeader(’m’, ’math.h’):

print ’Did not find libm.a or m.lib, exiting!’
Exit(1)

env = conf.Finish()

This is essentially shorthand for separate calls to the CheckHeader and CheckLib
functions.

Checking for the Availability of a typedef

Check for the availability of a typedef by using the CheckType method:

env = Environment()
conf = Configure(env)
if not conf.CheckType(’off_t’):

print ’Did not find off_t typedef, assuming int’
conf.env.Append(CCFLAGS = ’-Doff_t=int’)

env = conf.Finish()

98

Chapter 21. Multi-Platform Configuration (Autoconf Functionality)

You can also add a string that will be placed at the beginning of the test file that will
be used to check for the typedef . This provide a way to specify files that must be
included to find the typedef :

env = Environment()
conf = Configure(env)
if not conf.CheckType(’off_t’, ’#include <sys/types.h >\n’):

print ’Did not find off_t typedef, assuming int’
conf.env.Append(CCFLAGS = ’-Doff_t=int’)

env = conf.Finish()

Adding Your Own Custom Checks
A custom check is a Python function that checks for a certain condition to exist on
the running system, usually using methods that SCons supplies to take care of the
details of checking whether a compilation succeeds, a link succeeds, a program is
runnable, etc. A simple custom check for the existence of a specific library might look
as follows:

mylib_test_source_file = """
#include <mylib.h >
int main(int argc, char **argv)
{

MyLibrary mylib(argc, argv);
return 0;

}
"""

def CheckMyLibrary(context):
context.Message(’Checking for MyLibrary...’)
result = context.TryLink(mylib_test_source_file, ’.c’)
context.Result(result)
return result

The Message and Result methods should typically begin and end a custom check
to let the user know what’s going on: the Message call prints the specified message
(with no trailing newline) and the Result call prints ok if the check succeeds and
failed if it doesn’t. The TryLink method actually tests for whether the specified
program text will successfully link.

(Note that a custom check can modify its check based on any arguments you choose
to pass it, or by using or modifying the configure context environment in the
context.env attribute.)

This custom check function is then attached to the configure context by passing
a dictionary to the Configure call that maps a name of the check to the underlying
function:

env = Environment()
conf = Configure(env, custom_tests = {’CheckMyLibrary’ : CheckMyLibrary})

You’ll typically want to make the check and the function name the same, as we’ve
done here, to avoid potential confusion.

We can then put these pieces together and actually call the CheckMyLibrary check as
follows:

mylib_test_source_file = """
#include <mylib.h >
int main(int argc, char **argv)

99

Chapter 21. Multi-Platform Configuration (Autoconf Functionality)

{
MyLibrary mylib(argc, argv);
return 0;

}
"""

def CheckMyLibrary(context):
context.Message(’Checking for MyLibrary... ’)
result = context.TryLink(mylib_test_source_file, ’.c’)
context.Result(result)
return result

env = Environment()
conf = Configure(env, custom_tests = {’CheckMyLibrary’ : CheckMyLibrary})
if not conf.CheckMyLibrary():

print ’MyLibrary is not installed!’
Exit(1)

env = conf.Finish()

We would then add actual calls like Program() to build
something using the "env" construction environment.

If MyLibrary is not installed on the system, the output will look like:

% scons
scons: Reading SConscript file ...
Checking for MyLibrary... failed
MyLibrary is not installed!

If MyLibrary is installed, the output will look like:

% scons
scons: Reading SConscript file ...
Checking for MyLibrary... failed
scons: done reading SConscript
scons: Building targets ...

.

.

.

Not Configuring When Cleaning Targets
Using multi-platform configuration as described in the previous sections will run the
configuration commands even when invoking scons -c to clean targets:

% scons -Q -c
Checking for MyLibrary... ok
Removed foo.o
Removed foo

Although running the platform checks when removing targets doesn’t hurt anything,
it’s usually unnecessary. You can avoid this by using the GetOption (); method to
check whether the -c (clean) option has been invoked on the command line:

env = Environment()
if not env.GetOption(’clean’):

conf = Configure(env, custom_tests = {’CheckMyLibrary’ : CheckMyLibrary})
if not conf.CheckMyLibrary():

print ’MyLibrary is not installed!’

100

Chapter 21. Multi-Platform Configuration (Autoconf Functionality)

Exit(1)
env = conf.Finish()

% scons -Q -c
Removed foo.o
Removed foo

101

Chapter 21. Multi-Platform Configuration (Autoconf Functionality)

102

Chapter 22. Caching Built Files

On multi-developer software projects, you can sometimes speed up every devel-
oper’s builds a lot by allowing them to share the derived files that they build. SCons
makes this easy, as well as reliable.

Specifying the Shared Cache Directory
To enable sharing of derived files, use the CacheDir function in any SConscript file:

CacheDir(’/usr/local/build_cache’)

Note that the directory you specify must already exist and be readable and writable
by all developers who will be sharing derived files. It should also be in some central
location that all builds will be able to access. In environments where developers are
using separate systems (like individual workstations) for builds, this directory would
typically be on a shared or NFS-mounted file system.

Here’s what happens: When a build has a CacheDir specified, every time a file is
built, it is stored in the shared cache directory along with its MD5 build signature.
On subsequent builds, before an action is invoked to build a file, SCons will check
the shared cache directory to see if a file with the exact same build signature already
exists. If so, the derived file will not be built locally, but will be copied into the local
build directory from the shared cache directory, like so:

% scons -Q
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q -c
Removed hello.o
Removed hello
% scons -Q
Retrieved ‘hello.o’ from cache
Retrieved ‘hello’ from cache

Keeping Build Output Consistent
One potential drawback to using a shared cache is that your build output can be
inconsistent from invocation to invocation, because any given file may be rebuilt one
time and retrieved from the shared cache the next time. This can make analyzing
build output more difficult, especially for automated scripts that expect consistent
output each time.

If, however, you use the --cache-show option, SCons will print the command line
that it would have executed to build the file, even when it is retrieving the file from
the shared cache. This makes the build output consistent every time the build is run:

% scons -Q
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q -c
Removed hello.o
Removed hello
% scons -Q --cache-show
cc -o hello.o -c hello.c
cc -o hello hello.o

103

Chapter 22. Caching Built Files

The trade-off, of course, is that you no longer know whether or not SCons has re-
trieved a derived file from cache or has rebuilt it locally.

Not Retrieving Files From a Shared Cache
Retrieving an already-built file from the shared cache is usually a significant time-
savings over rebuilding the file, but how much of a savings (or even whether it saves
time at all) can depend a great deal on your system or network configuration. For
example, retrieving cached files from a busy server over a busy network might end
up being slower than rebuilding the files locally.

In these cases, you can specify the --cache-disable command-line option to tell
SCons to not retrieve already-built files from the shared cache directory:

% scons -Q
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q -c
Removed hello.o
Removed hello
% scons -Q
Retrieved ‘hello.o’ from cache
Retrieved ‘hello’ from cache
% scons -Q -c
Removed hello.o
Removed hello
% scons -Q --cache-disable
cc -o hello.o -c hello.c
cc -o hello hello.o

Populating a Shared Cache With Already-Built Files
Sometimes, you may have one or more derived files already built in your local build
tree that you wish to make available to other people doing builds. For example, you
may find it more effective to perform integration builds with the cache disabled (per
the previous section) and only populate the shared cache directory with the built files
after the integration build has completed successfully. This way, the cache will only
get filled up with derived files that are part of a complete, successful build not with
files that might be later overwritten while you debug integration problems.

In this case, you can use the the --cache-force option to tell SCons to put all derived
files in the cache, even if the files had already been built by a previous invocation:

% scons -Q --cache-disable
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q -c
Removed hello.o
Removed hello
% scons -Q --cache-disable
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q --cache-force
scons: ‘.’ is up to date.
% scons -Q -c
Removed hello.o
Removed hello
% scons -Q
Retrieved ‘hello.o’ from cache
Retrieved ‘hello’ from cache

104

Chapter 22. Caching Built Files

Notice how the above sample run demonstrates that the --cache-disable option
avoids putting the built hello.o and hello files in the cache, but after using the
--cache-force option, the files have been put in the cache for the next invocation to
retrieve.

105

Chapter 22. Caching Built Files

106

Chapter 23. Alias Targets

We’ve already seen how you can use the Alias function to create a target named
install :

env = Environment()
hello = env.Program(’hello.c’)
env.Install(’/usr/bin’, hello)
env.Alias(’install’, ’/usr/bin’)

You can then use this alias on the command line to tell SCons more naturally that you
want to install files:

% scons -Q install
cc -o hello.o -c hello.c
cc -o hello hello.o
Install file: "hello" as "/usr/bin/hello"

Like other Builder methods, though, the Alias method returns an object represent-
ing the alias being built. You can then use this object as input to anothother Builder .
This is especially useful if you use such an object as input to another call to the Alias
Builder , allowing you to create a hierarchy of nested aliases:

env = Environment()
p = env.Program(’foo.c’)
l = env.Library(’bar.c’)
env.Install(’/usr/bin’, p)
env.Install(’/usr/lib’, l)
ib = env.Alias(’install-bin’, ’/usr/bin’)
il = env.Alias(’install-lib’, ’/usr/lib’)
env.Alias(’install’, [ib, il])

This example defines separate install , install-bin , and install-lib aliases, al-
lowing you finer control over what gets installed:

% scons -Q install-bin
cc -o foo.o -c foo.c
cc -o foo foo.o
Install file: "foo" as "/usr/bin/foo"
% scons -Q install-lib
cc -o bar.o -c bar.c
ar rc libbar.a bar.o
ranlib libbar.a
Install file: "libbar.a" as "/usr/lib/libbar.a"
% scons -Q -c /
Removed foo.o
Removed foo
Removed /usr/bin/foo
Removed bar.o
Removed libbar.a
Removed /usr/lib/libbar.a
% scons -Q install
cc -o foo.o -c foo.c
cc -o foo foo.o
Install file: "foo" as "/usr/bin/foo"
cc -o bar.o -c bar.c
ar rc libbar.a bar.o
ranlib libbar.a
Install file: "libbar.a" as "/usr/lib/libbar.a"

107

Chapter 23. Alias Targets

108

Chapter 24. Java Builds

So far, we’ve been using examples of building C and C++ programs to demonstrate
the features of SCons. SCons also supports building Java programs, but Java builds
are handled slightly differently, which reflects the ways in which the Java compiler
and tools build programs differently than other languages’ tool chains.

Building Java Class Files: the Java Builder
The basic activity when programming in Java, of course, is to take one or more .java
files containing Java source code and to call the Java compiler to turn them into one or
more .class files. In SCons, you do this by giving the Java Builder a target directory
in which to put the .class files, and a source directory that contains the .java files:

Java(’classes’, ’src’)

If the src directory contains three .java source files, then running SCons might look
like this:

% scons -Q
javac -d classes -sourcepath src src/Example1.java src/Example2.java src/Example3.java

SCons will actually search the src directory tree for all of the .java files. The Java
compiler will then create the necessary class files in the classes subdirectory, based
on the class names found in the .java files.

How SCons Handles Java Dependencies
In addition to searching the source directory for .java files, SCons actually runs the
.java files through a stripped-down Java parser that figures out what classes are
defined. In other words, SCons knows, without you having to tell it, what .class
files will be produced by the javac call. So our one-liner example from the preceding
section:

Java(’classes’, ’src’)

Will not only tell you reliably that the .class files in the classes subdirectory are
up-to-date:

% scons -Q
javac -d classes -sourcepath src src/Example1.java src/Example2.java src/Example3.java
% scons -Q classes
scons: ‘classes’ is up to date.

But it will also remove all of the generated .class files, even for inner classes,
without you having to specify them manually. For example, if our Example1.java
and Example3.java files both define additional classes, and the class defined in
Example2.java has an inner class, running scons -c will clean up all of those
.class files as well:

% scons -Q
javac -d classes -sourcepath src src/Example1.java src/Example2.java src/Example3.java
% scons -Q -c classes
Removed classes/Example1.class
Removed classes/AdditionalClass1.class
Removed classes/Example2$Inner2.class

109

Chapter 24. Java Builds

Removed classes/Example2.class
Removed classes/Example3.class
Removed classes/AdditionalClass3.class

Building Java Archive (.jar) Files: the Jar Builder
After building the class files, it’s common to collect them into a Java archive (.jar)
file, which you do by calling the Jar Builder method. If you want to just collect all of
the class files within a subdirectory, you can just specify that subdirectory as the Jar
source:

Java(target = ’classes’, source = ’src’)
Jar(target = ’test.jar’, source = ’classes’)

SCons will then pass that directory to the jar command, which will collect all of the
underlying .class files:

% scons -Q
javac -d classes -sourcepath src src/Example1.java src/Example2.java src/Example3.java
jar cf test.jar classes

If you want to keep all of the .class files for multiple programs in one location, and
only archive some of them in each .jar file, you can pass the Jar builder a list of files
as its source. It’s extremely simple to create multiple .jar files this way, using the lists
of target class files created by calls to the Java builder as sources to the various Jar
calls:

prog1_class_files = Java(target = ’classes’, source = ’prog1’)
prog2_class_files = Java(target = ’classes’, source = ’prog2’)
Jar(target = ’prog1.jar’, source = prog1_class_files)
Jar(target = ’prog2.jar’, source = prog2_class_files)

This will then create prog1.jar and prog2.jar next to the subdirectories that con-
tain their .java files:

% scons -Q
javac -d classes -sourcepath prog1 prog1/Example1.java prog1/Example2.java
javac -d classes -sourcepath prog2 prog2/Example3.java prog2/Example4.java
jar cf prog1.jar classes/Example1.class classes/Example2.class
jar cf prog2.jar classes/Example3.class classes/Example4.class

Building C Header and Stub Files: the JavaH Builder
You can generate C header and source files for implementing native methods, by
using the JavaH Builder. There are several ways of using the JavaH Builder. One
typical invocation might look like:

classes = Java(target = ’classes’, source = ’src/pkg/sub’)
JavaH(target = ’native’, source = classes)

The source is a list of class files generated by the call to the Java Builder, and the
target is the output directory in which we want the C header files placed. The target
gets converted into the -d when SCons runs javah :

110

Chapter 24. Java Builds

% scons -Q
javac -d classes -sourcepath src/pkg/sub src/pkg/sub/Example1.java src/pkg/sub/Example2.java src/pkg/sub/Example3.java
javah -d native -classpath classes pkg.sub.Example1 pkg.sub.Example2 pkg.sub.Example3

In this case, the call to javah will generate the header files
native/pkg_sub_Example1.h , native/pkg_sub_Example2.h and
native/pkg_sub_Example3.h . Notice that SCons remembered that the class files
were generated with a target directory of classes , and that it then specified that
target directory as the -classpath option to the call to javah .

Although it’s more convenient to use the list of class files returned by the Java
Builder as the source of a call to the JavaH Builder, you can specify the list of class files
by hand, if you prefer. If you do, you need to set the $JAVACLASSDIR construction
variable when calling JavaH :

Java(target = ’classes’, source = ’src/pkg/sub’)
class_file_list = [’classes/pkg/sub/Example1.class’,

’classes/pkg/sub/Example2.class’,
’classes/pkg/sub/Example3.class’]

JavaH(target = ’native’, source = class_file_list, JAVACLASSDIR = ’classes’)

The $JAVACLASSDIR value then gets converted into the -classpath when SCons
runs javah :

% scons -Q
javac -d classes -sourcepath src/pkg/sub src/pkg/sub/Example1.java src/pkg/sub/Example2.java src/pkg/sub/Example3.java
javah -d native -classpath classes pkg.sub.Example1 pkg.sub.Example2 pkg.sub.Example3

Lastly, if you don’t want a separate header file generated for each source file, you can
specify an explicit File Node as the target of the JavaH Builder:

classes = Java(target = ’classes’, source = ’src/pkg/sub’)
JavaH(target = File(’native.h’), source = classes)

Because SCons assumes by default that the target of the JavaH builder is a directory,
you need to use the File function to make sure that SCons doesn’t create a directory
named native.h . When a file is used, though, SCons correctly converts the file name
into the javah -o option:

% scons -Q
javac -d classes -sourcepath src/pkg/sub src/pkg/sub/Example1.java src/pkg/sub/Example2.java src/pkg/sub/Example3.java
javah -o native.h -classpath classes pkg.sub.Example1 pkg.sub.Example2 pkg.sub.Example3

Building RMI Stub and Skeleton Class Files: the RMIC Builder
You can generate Remote Method Invocation stubs by using the RMIC Builder. The
source is a list of directories, typically returned by a call to the Java Builder, and the
target is an output directory where the _Stub.class and _Skel.class files will be
placed:

classes = Java(target = ’classes’, source = ’src/pkg/sub’)
RMIC(target = ’outdir’, source = classes)

As it did with the JavaH Builder, SCons remembers the class directory and passes it
as the -classpath option to rmic :

111

Chapter 24. Java Builds

% scons -Q
javac -d classes -sourcepath src/pkg/sub src/pkg/sub/Example1.java src/pkg/sub/Example2.java
rmic -d outdir -classpath classes pkg.sub.Example1 pkg.sub.Example2

This example would generate the files outdir/pkg/sub/Example1_Skel.class ,
outdir/pkg/sub/Example1_Stub.class , outdir/pkg/sub/Example2_Skel.class
and outdir/pkg/sub/Example2_Stub.class .

112

Chapter 25. Troubleshooting

The experience of configuring any software build tool to build a large code base usu-
ally, at some point, involves trying to figure out why the tool is behaving a certain
way, and how to get it to behave the way you want. SCons is no different.

Why is That Target Being Rebuilt? the --debug=explain Option
Let’s take a simple example of a misconfigured build that causes a target to be rebuilt
every time SCons is run:

Intentionally misspell the output file name in the
command used to create the file:
Command(’file.out’, ’file.in’, ’cp $SOURCE file.oout’)

(Note to Windows users: The POSIX cp command copies the first file named on the
command line to the second file. In our example, it copies the file.in file to the
file.out file.)

Now if we run SCons multiple on this example, we see that it re-runs the cp command
every time:

% scons -Q
cp file.in file.oout
% scons -Q
cp file.in file.oout
% scons -Q
cp file.in file.oout

In this example, the underlying cause is obvious: we’ve intentionally misspelled the
output file name in the cp command, so the command doesn’t actually build the
file.out file that we’ve told SCons to expect. But if the problem weren’t obvious,
it would be helpful to specify the --debug=explain option on the command line to
have SCons tell us very specifically why it’s decided to rebuild the target:

% scons -Q --debug=explain
scons: building ‘file.out’ because it doesn’t exist
cp file.in file.oout

If this had been a more complicated example involving a lot of build output, having
SCons tell us that it’s trying to rebuild the target file because it doesn’t exist would be
an important clue that something was wrong with the command that we invoked to
build it.

The --debug=explain option also comes in handy to help figure out what input file
changed. Given a simple configuration that builds a program from three source files,
changing one of the source files and rebuilding with the --debug=explain option
shows very specifically why SCons rebuilds the files that it does:

% scons -Q
cc -o file1.o -c file1.c
cc -o file2.o -c file2.c
cc -o file3.o -c file3.c
cc -o prog file1.o file2.o file3.o
% edit file2.c

[CHANGE THE CONTENTS OF file2.c]
% scons -Q --debug=explain
scons: rebuilding ‘file2.o’ because ‘file2.c’ changed
cc -o file2.o -c file2.c
scons: rebuilding ‘prog’ because ‘file2.o’ changed

113

Chapter 25. Troubleshooting

cc -o prog file1.o file2.o file3.o

This becomes even more helpful in identifying when a file is rebuilt due to a change
in an implicit dependency, such as an incuded .h file. If the file1.c and file3.c
files in our example both included a hello.h file, then changing that included file
and re-running SCons with the --debug=explain option will pinpoint that it’s the
change to the included file that starts the chain of rebuilds:

% scons -Q
cc -o file1.o -c -I. file1.c
cc -o file2.o -c -I. file2.c
cc -o file3.o -c -I. file3.c
cc -o prog file1.o file2.o file3.o
% edit hello.h

[CHANGE THE CONTENTS OF hello.h]
% scons -Q --debug=explain
scons: rebuilding ‘file1.o’ because ‘hello.h’ changed
cc -o file1.o -c -I. file1.c
scons: rebuilding ‘file3.o’ because ‘hello.h’ changed
cc -o file3.o -c -I. file3.c
scons: rebuilding ‘prog’ because:

‘file1.o’ changed
‘file3.o’ changed

cc -o prog file1.o file2.o file3.o

What’s in That Construction Environment? the DumpMethod
When you create a construction environment, SCons populates it with construction
variables that are set up for various compilers, linkers and utilities that it finds on
your system. Although this is usually helpful and what you want, it might be frus-
trating if SCons doesn’t set certain variables that you expect to be sit. In situations
like this, it’s sometimes helpful to use the construction environment Dumpmethod
to print all or some of the construction variables. Note that the Dumpmethod returns
the representation of the variables in the environment for you to print (or otherwise
manipulate):

On a POSIX system with gcc installed, this might generate:

% scons
scons: Reading SConscript files ...
{ ’BUILDERS’: {},

’CONFIGUREDIR’: ’#/.sconf_temp’,
’CONFIGURELOG’: ’#/config.log’,
’CPPSUFFIXES’: [’.c’,

’.C’,
’.cxx’,
’.cpp’,
’.c++’,
’.cc’,
’.h’,
’.H’,
’.hxx’,
’.hpp’,
’.hh’,
’.F’,
’.fpp’,
’.FPP’,
’.m’,
’.mm’,
’.S’,
’.spp’,

114

Chapter 25. Troubleshooting

’.SPP’],
’DSUFFIXES’: [’.d’],
’Dir’: <SCons.Defaults.Variable_Method_Caller instance at 0xb7c43bec >,
’Dirs’: <SCons.Defaults.Variable_Method_Caller instance at 0xb7c43c0c >,
’ENV’: {’PATH’: ’/usr/local/bin:/opt/bin:/bin:/usr/bin’},
’ESCAPE’: <function escape at 0xb7b66c34 >,
’File’: <SCons.Defaults.Variable_Method_Caller instance at 0xb7c43c2c >,
’IDLSUFFIXES’: [’.idl’, ’.IDL’],
’INSTALL’: <function installFunc at 0xb7c41f0c >,
’INSTALLSTR’: <function installStr at 0xb7c41f44 >,
’LATEXSUFFIXES’: [’.tex’, ’.ltx’, ’.latex’],
’LIBPREFIX’: ’lib’,
’LIBPREFIXES’: ’$LIBPREFIX’,
’LIBSUFFIX’: ’.a’,
’LIBSUFFIXES’: [’$LIBSUFFIX’, ’$SHLIBSUFFIX’],
’MAXLINELENGTH’: 128072,
’OBJPREFIX’: ”,
’OBJSUFFIX’: ’.o’,
’PLATFORM’: ’posix’,
’PROGPREFIX’: ”,
’PROGSUFFIX’: ”,
’PSPAWN’: <function piped_env_spawn at 0xb7b66fb4 >,
’RDirs’: <SCons.Defaults.Variable_Method_Caller instance at 0xb7c43c4c >,
’SCANNERS’: [],
’SHELL’: ’sh’,
’SHLIBPREFIX’: ’$LIBPREFIX’,
’SHLIBSUFFIX’: ’.so’,
’SHOBJPREFIX’: ’$OBJPREFIX’,
’SHOBJSUFFIX’: ’$OBJSUFFIX’,
’SPAWN’: <function spawnvpe_spawn at 0xb7b66a74 >,
’TEMPFILE’: <class SCons.Platform.TempFileMunge at 0xb7bd37ac >,
’TEMPFILEPREFIX’: ’@’,
’TOOLS’: [],
’_CPPDEFFLAGS’: ’${_defines(CPPDEFPREFIX, CPPDEFINES, CPPDEFSUFFIX, __env__)}’,
’_CPPINCFLAGS’: ’$(${_concat(INCPREFIX, CPPPATH, INCSUFFIX, __env__, RDirs, TARGET, SOURCE)} $)’,
’_LIBDIRFLAGS’: ’$(${_concat(LIBDIRPREFIX, LIBPATH, LIBDIRSUFFIX, __env__, RDirs, TARGET, SOURCE)} $)’,
’_LIBFLAGS’: ’${_concat(LIBLINKPREFIX, LIBS, LIBLINKSUFFIX, __env__)}’,
’__RPATH’: ’$_RPATH’,
’_concat’: <function _concat at 0xb7c41fb4 >,
’_defines’: <function _defines at 0xb7c47064 >,
’_installStr’: <function installStr at 0xb7c41f44 >,
’_stripixes’: <function _stripixes at 0xb7c4702c >}

scons: done reading SConscript files.
scons: Building targets ...
scons: ‘.’ is up to date.
scons: done building targets.

On a Windows system with Visual C++ the output might look like:

C:\> scons
scons: Reading SConscript files ...
{ ’BUILDERS’: {’Object’: <SCons.Builder.CompositeBuilder instance at 0xb7b6024c >, ’SharedObject’: <SCons.Builder.CompositeBuilder instance at 0xb7b603cc >, ’StaticObject’: <SCons.Builder.CompositeBuilder instance at 0xb7b6024c >, ’PCH’: <SCons.Builder.BuilderBase instance at 0xb7bd2eac >, ’RES’: <SCons.Builder.BuilderBase instance at 0xb7b596ec >},

’CC’: ’cl’,
’CCCOM’: <SCons.Action.FunctionAction instance at 0xb7b6086c >,
’CCCOMFLAGS’: ’$CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS /c $SOURCES /Fo$TARGET $CCPCHFLAGS $CCPDBFLAGS’,
’CCFLAGS’: [’/nologo’],
’CCPCHFLAGS’: [’${(PCH and "/Yu%s /Fp%s"%(PCHSTOP or "",File(PCH))) or ""}’],
’CCPDBFLAGS’: [’${(PDB and "/Z7") or ""}’],
’CFILESUFFIX’: ’.c’,
’CFLAGS’: [],
’CONFIGUREDIR’: ’#/.sconf_temp’,
’CONFIGURELOG’: ’#/config.log’,
’CPPDEFPREFIX’: ’/D’,
’CPPDEFSUFFIX’: ”,
’CPPSUFFIXES’: [’.c’,

115

Chapter 25. Troubleshooting

’.C’,
’.cxx’,
’.cpp’,
’.c++’,
’.cc’,
’.h’,
’.H’,
’.hxx’,
’.hpp’,
’.hh’,
’.F’,
’.fpp’,
’.FPP’,
’.m’,
’.mm’,
’.S’,
’.spp’,
’.SPP’],

’CXX’: ’$CC’,
’CXXCOM’: ’$CXX $CXXFLAGS $CCCOMFLAGS’,
’CXXFILESUFFIX’: ’.cc’,
’CXXFLAGS’: [’$CCFLAGS’, ’$(’, ’/TP’, ’$)’],
’DSUFFIXES’: [’.d’],
’Dir’: <SCons.Defaults.Variable_Method_Caller instance at 0xb7c58bec >,
’Dirs’: <SCons.Defaults.Variable_Method_Caller instance at 0xb7c58c0c >,
’ENV’: { ’INCLUDE’: ’C:\\Program Files\\Microsoft Visual Studio/VC98\\include’,

’LIB’: ’C:\\Program Files\\Microsoft Visual Studio/VC98\\lib’,
’PATH’: ’C:\\Program Files\\Microsoft Visual Studio\\Common\\tools\\WIN95;C:\\Program Files\\Microsoft Visual Studio\\Common\\MSDev98\\bin;C:\\Program Files\\Microsoft Visual Studio\\Common\\tools;C:\\Program Files\\Microsoft Visual Studio/VC98\\bin’,
’PATHEXT’: ’.COM;.EXE;.BAT;.CMD’,
’SystemRoot’: ’C:/WINDOWS’},

’ESCAPE’: <function escape at 0xb7bc917c >,
’File’: <SCons.Defaults.Variable_Method_Caller instance at 0xb7c58c2c >,
’IDLSUFFIXES’: [’.idl’, ’.IDL’],
’INCPREFIX’: ’/I’,
’INCSUFFIX’: ”,
’INSTALL’: <function installFunc at 0xb7c56f0c >,
’INSTALLSTR’: <function installStr at 0xb7c56f44 >,
’LATEXSUFFIXES’: [’.tex’, ’.ltx’, ’.latex’],
’LIBPREFIX’: ”,
’LIBPREFIXES’: [’$LIBPREFIX’],
’LIBSUFFIX’: ’.lib’,
’LIBSUFFIXES’: [’$LIBSUFFIX’],
’MAXLINELENGTH’: 2048,
’MSVS’: {’VERSION’: ’6.0’, ’VERSIONS’: [’6.0’]},
’MSVS_VERSION’: ’6.0’,
’OBJPREFIX’: ”,
’OBJSUFFIX’: ’.obj’,
’PCHCOM’: ’$CXX $CXXFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS /c $SOURCES /Fo${TARGETS[1]} /Yc$PCHSTOP /Fp${TARGETS[0]} $CCPDBFLAGS $PCHPDBFLAGS’,
’PCHPDBFLAGS’: [’${(PDB and "/Yd") or ""}’],
’PLATFORM’: ’win32’,
’PROGPREFIX’: ”,
’PROGSUFFIX’: ’.exe’,
’PSPAWN’: <function piped_spawn at 0xb7bc90d4 >,
’RC’: ’rc’,
’RCCOM’: ’$RC $_CPPDEFFLAGS $_CPPINCFLAGS $RCFLAGS /fo$TARGET $SOURCES’,
’RCFLAGS’: [],
’RDirs’: <SCons.Defaults.Variable_Method_Caller instance at 0xb7c58c4c >,
’SCANNERS’: [],
’SHCC’: ’$CC’,
’SHCCCOM’: <SCons.Action.FunctionAction instance at 0xb7b608cc >,
’SHCCFLAGS’: [’$CCFLAGS’],
’SHCFLAGS’: [’$CFLAGS’],
’SHCXX’: ’$CXX’,
’SHCXXCOM’: ’$SHCXX $SHCXXFLAGS $CCCOMFLAGS’,
’SHCXXFLAGS’: [’$CXXFLAGS’],
’SHELL’: None,

116

Chapter 25. Troubleshooting

’SHLIBPREFIX’: ”,
’SHLIBSUFFIX’: ’.dll’,
’SHOBJPREFIX’: ’$OBJPREFIX’,
’SHOBJSUFFIX’: ’$OBJSUFFIX’,
’SPAWN’: <function spawn at 0xb7bc9144 >,
’STATIC_AND_SHARED_OBJECTS_ARE_THE_SAME’: 1,
’TEMPFILE’: <class SCons.Platform.TempFileMunge at 0xb7be87ac >,
’TEMPFILEPREFIX’: ’@’,
’TOOLS’: [’msvc’],
’_CPPDEFFLAGS’: ’${_defines(CPPDEFPREFIX, CPPDEFINES, CPPDEFSUFFIX, __env__)}’,
’_CPPINCFLAGS’: ’$(${_concat(INCPREFIX, CPPPATH, INCSUFFIX, __env__, RDirs, TARGET, SOURCE)} $)’,
’_LIBDIRFLAGS’: ’$(${_concat(LIBDIRPREFIX, LIBPATH, LIBDIRSUFFIX, __env__, RDirs, TARGET, SOURCE)} $)’,
’_LIBFLAGS’: ’${_concat(LIBLINKPREFIX, LIBS, LIBLINKSUFFIX, __env__)}’,
’_concat’: <function _concat at 0xb7c56fb4 >,
’_defines’: <function _defines at 0xb7c5c064 >,
’_installStr’: <function installStr at 0xb7c56f44 >,
’_stripixes’: <function _stripixes at 0xb7c5c02c >}

scons: done reading SConscript files.
scons: Building targets ...
scons: ‘.’ is up to date.
scons: done building targets.

The construction environments in these examples have actually been restricted to
just gcc and Visual C++, respectively. In a real-life situation, the construction envi-
ronments will likely contain a great many more variables.

To make it easier to see just what you’re interested in, the Dumpmethod allows you to
specify a specific constrcution variable that you want to disply. For example, it’s not
unusual to want to verify the external environment used to execute build commands,
to make sure that the PATH and other environment variables are set up the way they
should be. You can do this as follows:

Which might display the following when executed on a POSIX system:

% scons
scons: Reading SConscript files ...
{’PATH’: ’/usr/local/bin:/opt/bin:/bin:/usr/bin’}
scons: done reading SConscript files.
scons: Building targets ...
scons: ‘.’ is up to date.
scons: done building targets.

And the following when executed on a Windows system:

C:\> scons
scons: Reading SConscript files ...
{ ’INCLUDE’: ’C:\\Program Files\\Microsoft Visual Studio/VC98\\include’,

’LIB’: ’C:\\Program Files\\Microsoft Visual Studio/VC98\\lib’,
’PATH’: ’C:\\Program Files\\Microsoft Visual Studio\\Common\\tools\\WIN95;C:\\Program Files\\Microsoft Visual Studio\\Common\\MSDev98\\bin;C:\\Program Files\\Microsoft Visual Studio\\Common\\tools;C:\\Program Files\\Microsoft Visual Studio/VC98\\bin’,
’PATHEXT’: ’.COM;.EXE;.BAT;.CMD’,
’SystemRoot’: ’C:/WINDOWS’}

scons: done reading SConscript files.
scons: Building targets ...
scons: ‘.’ is up to date.
scons: done building targets.

117

Chapter 25. Troubleshooting

118

Appendix A. Construction Variables

This appendix contains descriptions of all of the construction variables that are po-
tentially available "out of the box" in this version of SCons. Whether or not setting a
construction variable in a construction environment will actually have an effect de-
pends on whether any of the Tools and/or Builders that use the variable have been
included in the construction environment.

In this appendix, we have appended the initial $ (dollar sign) to the beginning of each
variable name when it appears in the text, but left off the dollar sign in the left-hand
column where the name appears for each entry.

AR

The static library archiver.

ARCOM

The command line used to generate a static library from object files.

ARCOMSTR

The string displayed when an object file is generated from an assembly-language
source file. If this is not set, then $ARCOM (the command line) is displayed.
env = Environment(ARCOMSTR = "Archiving $TARGET")

ARFLAGS

General options passed to the static library archiver.

AS

The assembler.

ASCOM

The command line used to generate an object file from an assembly-language
source file.

ASCOMSTR

The string displayed when an object file is generated from an assembly-language
source file. If this is not set, then $ASCOM (the command line) is displayed.
env = Environment(ASCOMSTR = "Assembling $TARGET")

ASFLAGS

General options passed to the assembler.

ASPPCOM

The command line used to assemble an assembly-language source file into an
object file after first running the file through the C preprocessor. Any options
specified in the $ASFLAGS and $CPPFLAGS construction variables are included
on this command line.

ASPPCOMSTR

The string displayed when an object file is generated from an assembly-language
source file after first running the file through the C preprocessor. If this is not set,
then $ASPPCOM (the command line) is displayed.
env = Environment(ASPPCOMSTR = "Assembling $TARGET")

119

Appendix A. Construction Variables

ASPPFLAGS

General options when an assembling an assembly-language source file into an
object file after first running the file through the C preprocessor. The default is to
use the value of $ASFLAGS.

BIBTEX

The bibliography generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

BIBTEXCOM

The command line used to call the bibliography generator for the TeX formatter
and typesetter and the LaTeX structured formatter and typesetter.

BIBTEXCOMSTR

The string displayed when generating a bibliography for TeX or LaTeX. If this is
not set, then $BIBTEXCOM (the command line) is displayed.
env = Environment(BIBTEXCOMSTR = "Generating bibliography $TARGET")

BIBTEXFLAGS

General options passed to the bibliography generator for the TeX formatter and
typesetter and the LaTeX structured formatter and typesetter.

BITKEEPER

The BitKeeper executable.

BITKEEPERCOM

The command line for fetching source files using BitKeeper.

BITKEEPERCOMSTR

The string displayed when fetching a source file using BitKeeper. If this is not
set, then $BITKEEPERCOM (the command line) is displayed.

BITKEEPERGET

The command ($BITKEEPER) and subcommand for fetching source files using
BitKeeper.

BITKEEPERGETFLAGS

Options that are passed to the BitKeeper get subcommand.

BUILDERS

A dictionary mapping the names of the builders available through this environ-
ment to underlying Builder objects. Builders named Alias, CFile, CXXFile, DVI,
Library, Object, PDF, PostScript, and Program are available by default. If you
initialize this variable when an Environment is created:
env = Environment(BUILDERS = {’NewBuilder’ : foo})

the default Builders will no longer be available. To use a new Builder object in
addition to the default Builders, add your new Builder object like this:
env = Environment()
env.Append(BUILDERS = {’NewBuilder’ : foo})

or this:

120

Appendix A. Construction Variables

env = Environment()
env[’BUILDERS][’NewBuilder’] = foo

CC

The C compiler.

CCCOM

The command line used to compile a C source file to a (static) object file. Any
options specified in the $CFLAGS, $CCFLAGS and $CPPFLAGS construction
variables are included on this command line.

CCCOMSTR

The string displayed when a C source file is compiled to a (static) object file. If
this is not set, then $CCCOM (the command line) is displayed.
env = Environment(CCCOMSTR = "Compiling static object $TARGET")

CCFLAGS

General options that are passed to the C and C++ compilers.

CCPCHFLAGS

Options added to the compiler command line to support building with precom-
piled headers. The default value expands expands to the appropriate Microsoft
Visual C++ command-line options when the $PCH construction variable is set.

CCPDBFLAGS

Options added to the compiler command line to support storing debugging in-
formation in a Microsoft Visual C++ PDB file. The default value expands ex-
pands to appropriate Microsoft Visual C++ command-line options when the
$PDB construction variable is set.

The Visual C++ compiler option that SCons uses by default to generate PDB
information is /Z7 . This works correctly with parallel (-j) builds because it em-
beds the debug information in the intermediate object files, as opposed to shar-
ing a single PDB file between multiple object files. This is also the only way to
get debug information embedded into a static library. Using the /Zi instead may
yield improved link-time performance, although parallel builds will no longer
work.

You can generate PDB files with the /Zi switch by overriding the default
$CCPDBFLAGS variable as follows:
import SCons.Util
env[’CCPDBFLAGS’] = SCons.Util.CLVar([’${(PDB and "/Zi /Fd%s" % File(PDB)) or ""}’])

An alternative would be to use the /Zi to put the debugging information in a
separate .pdb file for each object file by overriding the $CCPDBFLAGS variable
as follows:
env[’CCPDBFLAGS’] = ’/Zi /Fd${TARGET}.pdb’

CCVERSION

The version number of the C compiler. This may or may not be set, depending
on the specific C compiler being used.

121

Appendix A. Construction Variables

CFILESUFFIX

The suffix for C source files. This is used by the internal CFile builder when
generating C files from Lex (.l) or YACC (.y) input files. The default suffix, of
course, is .c (lower case). On case-insensitive systems (like Windows), SCons
also treats .C (upper case) files as C files.

CFLAGS

General options that are passed to the C compiler (C only; not C++).

_concat

A function used to produce variables like $_CPPINCFLAGS. It takes four or five
arguments: a prefix to concatenate onto each element, a list of elements, a suffix
to concatenate onto each element, an environment for variable interpolation, and
an optional function that will be called to transform the list before concatenation.
env[’_CPPINCFLAGS’] = ’$(${_concat(INCPREFIX, CPPPATH, INCSUFFIX, __env__, RDirs)} $)’,

CONFIGUREDIR

The name of the directory in which Configure context test files are written. The
default is .sconf_temp in the top-level directory containing the SConstruct file.

CONFIGURELOG

The name of the Configure context log file. The default is config.log in the
top-level directory containing the SConstruct file.

_CPPDEFFLAGS

An automatically-generated construction variable containing the C preproces-
sor command-line options to define values. The value of $_CPPDEFFLAGS is
created by appending $CPPDEFPREFIX and $CPPDEFSUFFIX to the beginning
and end of each directory in $CPPDEFINES.

CPPDEFINES

A platform independent specification of C preprocessor definitions. The defi-
nitions will be added to command lines through the automatically-generated
$_CPPDEFFLAGS construction variable (see above), which is constructed ac-
cording to the type of value of $CPPDEFINES:

If $CPPDEFINES is a string, the values of the $CPPDEFPREFIX and $CPPDEF-
SUFFIX construction variables will be added to the beginning and end.
Will add -Dxyz to POSIX compiler command lines,
and /Dxyz to Microsoft Visual C++ command lines.
env = Environment(CPPDEFINES=’xyz’)

If $CPPDEFINES is a list, the values of the $CPPDEFPREFIX and $CPPDEFSUF-
FIX construction variables will be appended to the beginning and end of each
element in the list. If any element is a list or tuple, then the first item is the name
being defined and the second item is its value:
Will add -DB=2 -DA to POSIX compiler command lines,
and /DB=2 /DA to Microsoft Visual C++ command lines.
env = Environment(CPPDEFINES=[(’B’, 2), ’A’])

If $CPPDEFINES is a dictionary, the values of the $CPPDEFPREFIX and $CP-
PDEFSUFFIX construction variables will be appended to the beginning and end
of each item from the dictionary. The key of each dictionary item is a name being
defined to the dictionary item’s corresponding value; if the value is None, then
the name is defined without an explicit value. Note that the resulting flags are

122

Appendix A. Construction Variables

sorted by keyword to ensure that the order of the options on the command line
is consistent each time scons is run.
Will add -DA -DB=2 to POSIX compiler command lines,
and /DA /DB=2 to Microsoft Visual C++ command lines.
env = Environment(CPPDEFINES={’B’:2, ’A’:None})

CPPDEFPREFIX

The prefix used to specify preprocessor definitions on the C compiler command
line. This will be appended to the beginning of each definition in the $CPPDE-
FINES construction variable when the $_CPPDEFFLAGS variable is automati-
cally generated.

CPPDEFSUFFIX

The suffix used to specify preprocessor definitions on the C compiler command
line. This will be appended to the end of each definition in the $CPPDEFINES
construction variable when the $_CPPDEFFLAGS variable is automatically gen-
erated.

CPPFLAGS

User-specified C preprocessor options. These will be included in any command
that uses the C preprocessor, including not just compilation of C and C++
source files via the $CCCOM, $SHCCCOM, $CXXCOM and $SHCXXCOM
command lines, but also the $FORTRANPPCOM, $SHFORTRANPPCOM,
$F77PPCOM and $SHF77PPCOM command lines used to compile a Fortran
source file, and the $ASPPCOM command line used to assemble an assembly
language source file, after first running each file through the C preprocessor.
Note that this variable does not contain -I (or similar) include search
path options that scons generates automatically from $CPPPATH. See
$_CPPINCFLAGS, below, for the variable that expands to those options.

_CPPINCFLAGS

An automatically-generated construction variable containing the C preproces-
sor command-line options for specifying directories to be searched for include
files. The value of $_CPPINCFLAGS is created by appending $INCPREFIX and
$INCSUFFIX to the beginning and end of each directory in $CPPPATH.

CPPPATH

The list of directories that the C preprocessor will search for include directo-
ries. The C/C++ implicit dependency scanner will search these directories for
include files. Don’t explicitly put include directory arguments in CCFLAGS or
CXXFLAGS because the result will be non-portable and the directories will not
be searched by the dependency scanner. Note: directory names in CPPPATH will
be looked-up relative to the SConscript directory when they are used in a com-
mand. To force scons to look-up a directory relative to the root of the source tree
use #:
env = Environment(CPPPATH=’#/include’)

The directory look-up can also be forced using the Dir () function:
include = Dir(’include’)
env = Environment(CPPPATH=include)

The directory list will be added to command lines through the
automatically-generated $_CPPINCFLAGS construction variable, which is
constructed by appending the values of the $INCPREFIX and $INCSUFFIX
construction variables to the beginning and end of each directory in
$CPPPATH. Any command lines you define that need the CPPPATH directory
list should include $_CPPINCFLAGS:

123

Appendix A. Construction Variables

env = Environment(CCCOM="my_compiler $_CPPINCFLAGS -c -o $TARGET $SOURCE")

CPPSUFFIXES

The list of suffixes of files that will be scanned for C preprocessor implicit de-
pendencies (#include lines). The default list is:
[".c", ".C", ".cxx", ".cpp", ".c++", ".cc",

".h", ".H", ".hxx", ".hpp", ".hh",
".F", ".fpp", ".FPP",
".m", ".mm",
".S", ".spp", ".SPP"]

CVS

The CVS executable.

CVSCOFLAGS

Options that are passed to the CVS checkout subcommand.

CVSCOM

The command line used to fetch source files from a CVS repository.

CVSCOMSTR

The string displayed when fetching a source file from a CVS repository. If this is
not set, then $CVSCOM (the command line) is displayed.

CVSFLAGS

General options that are passed to CVS. By default, this is set to -d
$CVSREPOSITORYto specify from where the files must be fetched.

CVSREPOSITORY

The path to the CVS repository. This is referenced in the default $CVSFLAGS
value.

CXX

The C++ compiler.

CXXCOM

The command line used to compile a C++ source file to an object file. Any op-
tions specified in the $CXXFLAGS and $CPPFLAGS construction variables are
included on this command line.

CXXCOMSTR

The string displayed when a C++ source file is compiled to a (static) object file.
If this is not set, then $CXXCOM (the command line) is displayed.
env = Environment(CXXCOMSTR = "Compiling static object $TARGET")

CXXFILESUFFIX

The suffix for C++ source files. This is used by the internal CXXFile builder when
generating C++ files from Lex (.ll) or YACC (.yy) input files. The default suffix is
.cc . SCons also treats files with the suffixes .cpp , .cxx , .c++ , and .C++ as C++
files, and files with .mmsuffixes as Objective C++ files. On case-sensitive systems

124

Appendix A. Construction Variables

(Linux, UNIX, and other POSIX-alikes), SCons also treats .C (upper case) files as
C++ files.

CXXFLAGS

General options that are passed to the C++ compiler. By default, this includes the
value of $CCFLAGS, so that setting $CCFLAGS affects both C and C++ compi-
lation. If you want to add C++-specific flags, you must set or override the value
of $CXXFLAGS.

CXXVERSION

The version number of the C++ compiler. This may or may not be set, depending
on the specific C++ compiler being used.

Dir

A function that converts a string into a Dir instance relative to the target being
built.

Dirs

A function that converts a list of strings into a list of Dir instances relative to the
target being built.

DSUFFIXES

The list of suffixes of files that will be scanned for imported D package files. The
default list is:
[’.d’]

DVIPDF

The TeX DVI file to PDF file converter.

DVIPDFCOM

The command line used to convert TeX DVI files into a PDF file.

DVIPDFCOMSTR

The string displayed when a TeX DVI file is converted into a PDF file. If this is
not set, then $DVIPDFCOM (the command line) is displayed.

DVIPDFFLAGS

General options passed to the TeX DVI file to PDF file converter.

DVIPS

The TeX DVI file to PostScript converter.

DVIPSFLAGS

General options passed to the TeX DVI file to PostScript converter.

ENV

A dictionary of environment variables to use when invoking commands. When
$ENV is used in a command all list values will be joined using the path separator
and any other non-string values will simply be coerced to a string. Note that, by
default, scons does not propagate the environment in force when you execute
scons to the commands used to build target files. This is so that builds will be
guaranteed repeatable regardless of the environment variables set at the time
scons is invoked.

125

Appendix A. Construction Variables

If you want to propagate your environment variables to the commands executed
to build target files, you must do so explicitly:
import os
env = Environment(ENV = os.environ)

Note that you can choose only to propagate certain environment variables. A
common example is the system PATH environment variable, so that scons uses
the same utilities as the invoking shell (or other process):
import os
env = Environment(ENV = {’PATH’ : os.environ[’PATH’]})

ESCAPE

A function that will be called to escape shell special characters in command lines.
The function should take one argument: the command line string to escape; and
should return the escaped command line.

F77

The Fortran 77 compiler. You should normally set the $FORTRAN variable,
which specifies the default Fortran compiler for all Fortran versions. You only
need to set $F77 if you need to use a specific compiler or compiler version for
Fortran 77 files.

F77COM

The command line used to compile a Fortran 77 source file to an object file. You
only need to set $F77COM if you need to use a specific command line for Fortran
77 files. You should normally set the $FORTRANCOM variable, which specifies
the default command line for all Fortran versions.

F77COMSTR

The string displayed when a Fortran 77 source file is compiled to an object file.
If this is not set, then $F77COM or $FORTRANCOM (the command line) is dis-
played.

F77FLAGS

General user-specified options that are passed to the Fortran 77 compiler. Note
that this variable does not contain -I (or similar) include search path options that
scons generates automatically from $F77PATH. See $_F77INCFLAGS below, for
the variable that expands to those options. You only need to set $F77FLAGS if
you need to define specific user options for Fortran 77 files. You should normally
set the $FORTRANFLAGS variable, which specifies the user-specified options
passed to the default Fortran compiler for all Fortran versions.

_F77INCFLAGS

An automatically-generated construction variable containing the Fortran 77
compiler command-line options for specifying directories to be searched
for include files. The value of $_F77INCFLAGS is created by appending
$INCPREFIX and $INCSUFFIX to the beginning and end of each directory in
$F77PATH.

F77PATH

The list of directories that the Fortran 77 compiler will search for include direc-
tories. The implicit dependency scanner will search these directories for include
files. Don’t explicitly put include directory arguments in $F77FLAGS because the
result will be non-portable and the directories will not be searched by the depen-
dency scanner. Note: directory names in $F77PATH will be looked-up relative to
the SConscript directory when they are used in a command. To force scons to

126

Appendix A. Construction Variables

look-up a directory relative to the root of the source tree use #: You only need to
set $F77PATH if you need to define a specific include path for Fortran 77 files.
You should normally set the $FORTRANPATH variable, which specifies the in-
clude path for the default Fortran compiler for all Fortran versions.
env = Environment(F77PATH=’#/include’)

The directory look-up can also be forced using the Dir () function:
include = Dir(’include’)
env = Environment(F77PATH=include)

The directory list will be added to command lines through the
automatically-generated $_F77INCFLAGS construction variable, which is
constructed by appending the values of the $INCPREFIX and $INCSUFFIX
construction variables to the beginning and end of each directory in $F77PATH.
Any command lines you define that need the F77PATH directory list should
include $_F77INCFLAGS:
env = Environment(F77COM="my_compiler $_F77INCFLAGS -c -o $TARGET $SOURCE")

F77PPCOM

The command line used to compile a Fortran 77 source file to an object file af-
ter first running the file through the C preprocessor. Any options specified in
the $F77FLAGS and $CPPFLAGS construction variables are included on this
command line. You only need to set $F77PPCOM if you need to use a specific
C-preprocessor command line for Fortran 77 files. You should normally set the
$FORTRANPPCOM variable, which specifies the default C-preprocessor com-
mand line for all Fortran versions.

F90

The Fortran 90 compiler. You should normally set the $FORTRAN variable,
which specifies the default Fortran compiler for all Fortran versions. You only
need to set $F90 if you need to use a specific compiler or compiler version for
Fortran 90 files.

F90COM

The command line used to compile a Fortran 90 source file to an object file. You
only need to set $F90COM if you need to use a specific command line for Fortran
90 files. You should normally set the $FORTRANCOM variable, which specifies
the default command line for all Fortran versions.

F90COMSTR

The string displayed when a Fortran 90 source file is compiled to an object file.
If this is not set, then $F90COM or $FORTRANCOM (the command line) is dis-
played.

F90FLAGS

General user-specified options that are passed to the Fortran 90 compiler. Note
that this variable does not contain -I (or similar) include search path options that
scons generates automatically from $F90PATH. See $_F90INCFLAGS below, for
the variable that expands to those options. You only need to set $F90FLAGS if
you need to define specific user options for Fortran 90 files. You should normally
set the $FORTRANFLAGS variable, which specifies the user-specified options
passed to the default Fortran compiler for all Fortran versions.

_F90INCFLAGS

An automatically-generated construction variable containing the Fortran 90
compiler command-line options for specifying directories to be searched

127

Appendix A. Construction Variables

for include files. The value of $_F90INCFLAGS is created by appending
$INCPREFIX and $INCSUFFIX to the beginning and end of each directory in
$F90PATH.

F90PATH

The list of directories that the Fortran 90 compiler will search for include direc-
tories. The implicit dependency scanner will search these directories for include
files. Don’t explicitly put include directory arguments in $F90FLAGS because the
result will be non-portable and the directories will not be searched by the depen-
dency scanner. Note: directory names in $F90PATH will be looked-up relative to
the SConscript directory when they are used in a command. To force scons to
look-up a directory relative to the root of the source tree use #: You only need to
set $F90PATH if you need to define a specific include path for Fortran 90 files.
You should normally set the $FORTRANPATH variable, which specifies the in-
clude path for the default Fortran compiler for all Fortran versions.
env = Environment(F90PATH=’#/include’)

The directory look-up can also be forced using the Dir () function:
include = Dir(’include’)
env = Environment(F90PATH=include)

The directory list will be added to command lines through the
automatically-generated $_F90INCFLAGS construction variable, which is
constructed by appending the values of the $INCPREFIX and $INCSUFFIX
construction variables to the beginning and end of each directory in $F90PATH.
Any command lines you define that need the F90PATH directory list should
include $_F90INCFLAGS:
env = Environment(F90COM="my_compiler $_F90INCFLAGS -c -o $TARGET $SOURCE")

F90PPCOM

The command line used to compile a Fortran 90 source file to an object file af-
ter first running the file through the C preprocessor. Any options specified in
the $F90FLAGS and $CPPFLAGS construction variables are included on this
command line. You only need to set $F90PPCOM if you need to use a specific
C-preprocessor command line for Fortran 90 files. You should normally set the
$FORTRANPPCOM variable, which specifies the default C-preprocessor com-
mand line for all Fortran versions.

F95

The Fortran 95 compiler. You should normally set the $FORTRAN variable,
which specifies the default Fortran compiler for all Fortran versions. You only
need to set $F95 if you need to use a specific compiler or compiler version for
Fortran 95 files.

F95COM

The command line used to compile a Fortran 95 source file to an object file. You
only need to set $F95COM if you need to use a specific command line for Fortran
95 files. You should normally set the $FORTRANCOM variable, which specifies
the default command line for all Fortran versions.

F95COMSTR

The string displayed when a Fortran 95 source file is compiled to an object file.
If this is not set, then $F95COM or $FORTRANCOM (the command line) is dis-
played.

128

Appendix A. Construction Variables

F95FLAGS

General user-specified options that are passed to the Fortran 95 compiler. Note
that this variable does not contain -I (or similar) include search path options that
scons generates automatically from $F95PATH. See $_F95INCFLAGS below, for
the variable that expands to those options. You only need to set $F95FLAGS if
you need to define specific user options for Fortran 95 files. You should normally
set the $FORTRANFLAGS variable, which specifies the user-specified options
passed to the default Fortran compiler for all Fortran versions.

_F95INCFLAGS

An automatically-generated construction variable containing the Fortran 95
compiler command-line options for specifying directories to be searched
for include files. The value of $_F95INCFLAGS is created by appending
$INCPREFIX and $INCSUFFIX to the beginning and end of each directory in
$F95PATH.

F95PATH

The list of directories that the Fortran 95 compiler will search for include direc-
tories. The implicit dependency scanner will search these directories for include
files. Don’t explicitly put include directory arguments in $F95FLAGS because the
result will be non-portable and the directories will not be searched by the depen-
dency scanner. Note: directory names in $F95PATH will be looked-up relative to
the SConscript directory when they are used in a command. To force scons to
look-up a directory relative to the root of the source tree use #: You only need to
set $F95PATH if you need to define a specific include path for Fortran 95 files.
You should normally set the $FORTRANPATH variable, which specifies the in-
clude path for the default Fortran compiler for all Fortran versions.
env = Environment(F95PATH=’#/include’)

The directory look-up can also be forced using the Dir () function:
include = Dir(’include’)
env = Environment(F95PATH=include)

The directory list will be added to command lines through the
automatically-generated $_F95INCFLAGS construction variable, which is
constructed by appending the values of the $INCPREFIX and $INCSUFFIX
construction variables to the beginning and end of each directory in $F95PATH.
Any command lines you define that need the F95PATH directory list should
include $_F95INCFLAGS:
env = Environment(F95COM="my_compiler $_F95INCFLAGS -c -o $TARGET $SOURCE")

F95PPCOM

The command line used to compile a Fortran 95 source file to an object file af-
ter first running the file through the C preprocessor. Any options specified in
the $F95FLAGS and $CPPFLAGS construction variables are included on this
command line. You only need to set $F95PPCOM if you need to use a specific
C-preprocessor command line for Fortran 95 files. You should normally set the
$FORTRANPPCOM variable, which specifies the default C-preprocessor com-
mand line for all Fortran versions.

File

A function that converts a string into a File instance relative to the target being
built.

FORTRAN

The default Fortran compiler for all versions of Fortran.

129

Appendix A. Construction Variables

FORTRANCOM

The command line used to compile a Fortran source file to an object file. By
default, any options specified in the $FORTRANFLAGS, $CPPFLAGS, $_CP-
PDEFFLAGS, $_FORTRANMODFLAG, and $_FORTRANINCFLAGS construc-
tion variables are included on this command line.

FORTRANCOMSTR

The string displayed when a Fortran source file is compiled to an object file. If
this is not set, then $FORTRANCOM (the command line) is displayed.

FORTRANFLAGS

General user-specified options that are passed to the Fortran compiler. Note that
this variable does not contain -I (or similar) include or module search path
options that scons generates automatically from $FORTRANPATH. See $_FOR-
TRANINCFLAGS and $_FORTRANMODFLAG, below, for the variables that ex-
pand those options.

_FORTRANINCFLAGS

An automatically-generated construction variable containing the Fortran
compiler command-line options for specifying directories to be searched for
include files and module files. The value of $_FORTRANINCFLAGS is created
by prepending/appending $INCPREFIX and $INCSUFFIX to the beginning
and end of each directory in $FORTRANPATH.

FORTRANMODDIR

Directory location where the Fortran compiler should place any module files it
generates. This variable is empty, by default. Some Fortran compilers will inter-
nally append this directory in the search path for module files, as well.

FORTRANMODDIRPREFIX

The prefix used to specify a module directory on the Fortran compiler command
line. This will be appended to the beginning of the directory in the $FORTRAN-
MODDIR construction variables when the $_FORTRANMODFLAG variables is
automatically generated.

FORTRANMODDIRSUFFIX

The suffix used to specify a module directory on the Fortran compiler command
line. This will be appended to the beginning of the directory in the $FORTRAN-
MODDIR construction variables when the $_FORTRANMODFLAG variables is
automatically generated.

_FORTRANMODFLAG

An automatically-generated construction variable containing the Fortran
compiler command-line option for specifying the directory location where
the Fortran compiler should place any module files that happen to get
generated during compilation. The value of $_FORTRANMODFLAG is
created by prepending/appending $FORTRANMODDIRPREFIX and
$FORTRANMODDIRSUFFIX to the beginning and end of the directory in
$FORTRANMODDIR.

FORTRANMODPREFIX

The module file prefix used by the Fortran compiler. SCons assumes that the For-
tran compiler follows the quasi-standard naming convention for module files of
module_name.mod . As a result, this variable is left empty, by default. For situa-
tions in which the compiler does not necessarily follow the normal convention,

130

Appendix A. Construction Variables

the user may use this variable. Its value will be appended to every module file
name as scons attempts to resolve dependencies.

FORTRANMODSUFFIX

The module file suffix used by the Fortran compiler. SCons assumes that the For-
tran compiler follows the quasi-standard naming convention for module files of
module_name.mod . As a result, this variable is set to ".mod", by default. For situ-
ations in which the compiler does not necessarily follow the normal convention,
the user may use this variable. Its value will be appended to every module file
name as scons attempts to resolve dependencies.

FORTRANPATH

The list of directories that the Fortran compiler will search for include files and
(for some compilers) module files. The Fortran implicit dependency scanner will
search these directories for include files (but not module files since they are au-
togenerated and, as such, may not actually exist at the time the scan takes place).
Don’t explicitly put include directory arguments in FORTRANFLAGS because
the result will be non-portable and the directories will not be searched by the de-
pendency scanner. Note: directory names in FORTRANPATH will be looked-up
relative to the SConscript directory when they are used in a command. To force
scons to look-up a directory relative to the root of the source tree use #:
env = Environment(FORTRANPATH=’#/include’)

The directory look-up can also be forced using the Dir () function:
include = Dir(’include’)
env = Environment(FORTRANPATH=include)

The directory list will be added to command lines through the
automatically-generated $_FORTRANINCFLAGS construction variable,
which is constructed by appending the values of the $INCPREFIX and
$INCSUFFIX construction variables to the beginning and end of each
directory in $FORTRANPATH. Any command lines you define that need the
FORTRANPATH directory list should include $_FORTRANINCFLAGS:
env = Environment(FORTRANCOM="my_compiler $_FORTRANINCFLAGS -c -o $TARGET $SOURCE")

FORTRANPPCOM

The command line used to compile a Fortran source file to an object file after first
running the file through the C preprocessor. By default, any options specified
in the $FORTRANFLAGS, $CPPFLAGS, _CPPDEFFLAGS, $_FORTRANMOD-
FLAG, and $_FORTRANINCFLAGS construction variables are included on this
command line.

FORTRANSUFFIXES

The list of suffixes of files that will be scanned for Fortran implicit dependencies
(INCLUDE lines and USE statements). The default list is:
[".f", ".F", ".for", ".FOR", ".ftn", ".FTN", ".fpp", ".FPP",
".f77", ".F77", ".f90", ".F90", ".f95", ".F95"]

FRAMEWORKPATH

On Mac OS X with gcc, a list containing the paths to search for frameworks.
Used by the compiler to find framework-style includes like #include
<Fmwk/Header.h>. Used by the linker to find user-specified frameworks
when linking (see $FRAMEWORKS). For example:

env.AppendUnique(FRAMEWORKPATH=’#myframeworkdir’)

131

Appendix A. Construction Variables

will add
... -Fmyframeworkdir

to the compiler and linker command lines.

_FRAMEWORKPATH

On Mac OS X with gcc, an automatically-generated construction
variable containing the linker command-line options corresponding to
$FRAMEWORKPATH.

FRAMEWORKPATHPREFIX

On Mac OS X with gcc, the prefix to be used for the FRAMEWORKPATH entries.
(see $FRAMEWORKPATH). The default value is -F .

FRAMEWORKPREFIX

On Mac OS X with gcc, the prefix to be used for linking in frameworks (see
$FRAMEWORKS). The default value is -framework .

_FRAMEWORKS

On Mac OS X with gcc, an automatically-generated construction variable con-
taining the linker command-line options for linking with FRAMEWORKS.

FRAMEWORKS

On Mac OS X with gcc, a list of the framework names to be linked into a program
or shared library or bundle. The default value is the empty list. For example:

env.AppendUnique(FRAMEWORKS=Split(’System Cocoa SystemConfiguration’))

FRAMEWORKSFLAGS

On Mac OS X with gcc, general user-supplied frameworks options to be added
at the end of a command line building a loadable module. (This has been largely
superceded by the $FRAMEWORKPATH, $FRAMEWORKPATHPREFIX,
$FRAMEWORKPREFIX and $FRAMEWORKS variables described above.)

GS

The Ghostscript program used to convert PostScript to PDF files.

GSCOM

The Ghostscript command line used to convert PostScript to PDF files.

GSCOMSTR

The string displayed when Ghostscript is used to convert a PostScript file to a
PDF file. If this is not set, then $GSCOM (the command line) is displayed.

GSFLAGS

General options passed to the Ghostscript program when converting PostScript
to PDF files.

IDLSUFFIXES

The list of suffixes of files that will be scanned for IDL implicit dependencies
(#include or import lines). The default list is:
[".idl", ".IDL"]

132

Appendix A. Construction Variables

INCPREFIX

The prefix used to specify an include directory on the C compiler command
line. This will be appended to the beginning of each directory in the $CPPPATH
and $FORTRANPATH construction variables when the $_CPPINCFLAGS and
$_FORTRANINCFLAGS variables are automatically generated.

INCSUFFIX

The suffix used to specify an include directory on the C compiler command
line. This will be appended to the end of each directory in the $CPPPATH and
$FORTRANPATH construction variables when the $_CPPINCFLAGS and
$_FORTRANINCFLAGS variables are automatically generated.

INSTALL

A function to be called to install a file into a destination file name. The default
function copies the file into the destination (and sets the destination file’s mode
and permission bits to match the source file’s). The function takes the following
arguments:
def install(dest, source, env):

dest is the path name of the destination file. source is the path name of the
source file. env is the construction environment (a dictionary of construction val-
ues) in force for this file installation.

INSTALLSTR

The string displayed when a file is installed into a destination file name. The
default is:
Install file: "$SOURCE" as "$TARGET"

INTEL_C_COMPILER_VERSION

Set by the "intelc" Tool to the major version number of the Intel C compiler se-
lected for use.

JAR

The Java archive tool.

JARCHDIR

The directory to which the Java archive tool should change (using the -C option).

JARCOM

The command line used to call the Java archive tool.

JARCOMSTR

The string displayed when the Java archive tool is called If this is not set, then
$JARCOM (the command line) is displayed.
env = Environment(JARCOMSTR = "JARchiving $SOURCES into $TARGET")

JARFLAGS

General options passed to the Java archive tool. By default this is set to cf to
create the necessary jar file.

133

Appendix A. Construction Variables

JARSUFFIX

The suffix for Java archives: .jar by default.

JAVAC

The Java compiler.

JAVACCOM

The command line used to compile a directory tree containing Java source files
to corresponding Java class files. Any options specified in the $JAVACFLAGS
construction variable are included on this command line.

JAVACCOMSTR

The string displayed when compiling a directory tree of Java source files to cor-
responding Java class files. If this is not set, then $JAVACCOM (the command
line) is displayed.
env = Environment(JAVACCOMSTR = "Compiling class files $TARGETS from $SOURCES")

JAVACFLAGS

General options that are passed to the Java compiler.

JAVACLASSDIR

The directory in which Java class files may be found. This is stripped from the
beginning of any Java .class file names supplied to the JavaH builder.

JAVACLASSSUFFIX

The suffix for Java class files; .class by default.

JAVAH

The Java generator for C header and stub files.

JAVAHCOM

The command line used to generate C header and stub files from Java classes.
Any options specified in the $JAVAHFLAGS construction variable are included
on this command line.

JAVAHCOMSTR

The string displayed when C header and stub files are generated from Java
classes. If this is not set, then $JAVAHCOM (the command line) is displayed.
env = Environment(JAVAHCOMSTR = "Generating header/stub file(s) $TARGETS from $SOURCES")

JAVAHFLAGS

General options passed to the C header and stub file generator for Java classes.

JAVASUFFIX

The suffix for Java files; .java by default.

LATEX

The LaTeX structured formatter and typesetter.

LATEXCOM

The command line used to call the LaTeX structured formatter and typesetter.
134

Appendix A. Construction Variables

LATEXCOMSTR

The string displayed when calling the LaTeX structured formatter and typesetter.
If this is not set, then $LATEXCOM (the command line) is displayed.
env = Environment(LATEXCOMSTR = "Building $TARGET from LaTeX input $SOURCES")

LATEXFLAGS

General options passed to the LaTeX structured formatter and typesetter.

LATEXRETRIES

The maximum number of times that LaTeX will be re-run if the .log generated
by the $LATEXCOM command indicates that there are undefined references.
The default is to try to resolve undefined references by re-running LaTeX up to
three times.

LATEXSUFFIXES

The list of suffixes of files that will be scanned for LaTeX implicit dependencies
(\include or \import files). The default list is:
[".tex", ".ltx", ".latex"]

LDMODULE

The linker for building loadable modules. By default, this is the same as
$SHLINK.

LDMODULECOM

The command line for building loadable modules. On Mac OS X, this uses the
$LDMODULE, $LDMODULEFLAGS and $FRAMEWORKSFLAGS variables.
On other systems, this is the same as $SHLINK.

LDMODULECOMSTR

The string displayed when building loadable modules. If this is not set, then
$LDMODULECOM (the command line) is displayed.

LDMODULEFLAGS

General user options passed to the linker for building loadable modules.

LDMODULEPREFIX

The prefix used for loadable module file names. On Mac OS X, this is null; on
other systems, this is the same as $SHLIBPREFIX.

LDMODULESUFFIX

The suffix used for loadable module file names. On Mac OS X, this is null; on
other systems, this is the same as $SHLIBSUFFIX.

LEX

The lexical analyzer generator.

LEXCOM

The command line used to call the lexical analyzer generator to generate a source
file.

135

Appendix A. Construction Variables

LEXCOMSTR

The string displayed when generating a source file using the lexical analyzer
generator. If this is not set, then $LEXCOM (the command line) is displayed.
env = Environment(LEXCOMSTR = "Lex’ing $TARGET from $SOURCES")

LEXFLAGS

General options passed to the lexical analyzer generator.

_LIBDIRFLAGS

An automatically-generated construction variable containing the linker
command-line options for specifying directories to be searched for library.
The value of $_LIBDIRFLAGS is created by appending $LIBDIRPREFIX and
$LIBDIRSUFFIX to the beginning and end of each directory in $LIBPATH.

LIBDIRPREFIX

The prefix used to specify a library directory on the linker command line. This
will be appended to the beginning of each directory in the $LIBPATH construc-
tion variable when the $_LIBDIRFLAGS variable is automatically generated.

LIBDIRSUFFIX

The suffix used to specify a library directory on the linker command line. This
will be appended to the end of each directory in the $LIBPATH construction
variable when the $_LIBDIRFLAGS variable is automatically generated.

_LIBFLAGS

An automatically-generated construction variable containing the linker
command-line options for specifying libraries to be linked with the resulting
target. The value of $_LIBFLAGS is created by appending $LIBLINKPREFIX
and $LIBLINKSUFFIX to the beginning and end of each filename in $LIBS.

LIBLINKPREFIX

The prefix used to specify a library to link on the linker command line. This will
be appended to the beginning of each library in the $LIBS construction variable
when the $_LIBFLAGS variable is automatically generated.

LIBLINKSUFFIX

The suffix used to specify a library to link on the linker command line. This will
be appended to the end of each library in the $LIBS construction variable when
the $_LIBFLAGS variable is automatically generated.

LIBPATH

The list of directories that will be searched for libraries. The implicit dependency
scanner will search these directories for include files. Don’t explicitly put include
directory arguments in $LINKFLAGS or $SHLINKFLAGS because the result will
be non-portable and the directories will not be searched by the dependency scan-
ner. Note: directory names in LIBPATH will be looked-up relative to the SCon-
script directory when they are used in a command. To force scons to look-up a
directory relative to the root of the source tree use #:
env = Environment(LIBPATH=’#/libs’)

The directory look-up can also be forced using the Dir () function:
libs = Dir(’libs’)
env = Environment(LIBPATH=libs)

136

Appendix A. Construction Variables

The directory list will be added to command lines through the
automatically-generated $_LIBDIRFLAGS construction variable, which
is constructed by appending the values of the $LIBDIRPREFIX and
$LIBDIRSUFFIX construction variables to the beginning and end of each
directory in $LIBPATH. Any command lines you define that need the LIBPATH
directory list should include $_LIBDIRFLAGS:
env = Environment(LINKCOM="my_linker $_LIBDIRFLAGS $_LIBFLAGS -o $TARGET $SOURCE")

LIBPREFIX

The prefix used for (static) library file names. A default value is set for each
platform (posix, win32, os2, etc.), but the value is overridden by individual tools
(ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries they create.

LIBPREFIXES

A list of all legal prefixes for library file names. When searching for library de-
pendencies, SCons will look for files with these prefixes, the base library name,
and suffixes in the $LIBSUFFIXES list.

LIBS

A list of one or more libraries that will be linked with any executable programs
created by this environment.

The library list will be added to command lines through the
automatically-generated $_LIBFLAGS construction variable, which is
constructed by appending the values of the $LIBLINKPREFIX and
$LIBLINKSUFFIX construction variables to the beginning and end of each
filename in $LIBS. Any command lines you define that need the LIBS library
list should include $_LIBFLAGS:
env = Environment(LINKCOM="my_linker $_LIBDIRFLAGS $_LIBFLAGS -o $TARGET $SOURCE")

If you add a File object to the $LIBS list, the name of that file will be added to
$_LIBFLAGS, and thus the link line, as is, without $LIBLINKPREFIX or $LIB-
LINKSUFFIX. For example:
env.Append(LIBS=File(’/tmp/mylib.so’))

In all cases, scons will add dependencies from the executable program to all the
libraries in this list.

LIBSUFFIX

The suffix used for (static) library file names. A default value is set for each plat-
form (posix, win32, os2, etc.), but the value is overridden by individual tools (ar,
mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries they create.

LIBSUFFIXES

A list of all legal suffixes for library file names. When searching for library de-
pendencies, SCons will look for files with prefixes, in the $LIBPREFIXES list, the
base library name, and these suffixes.

LINK

The linker.

LINKCOM

The command line used to link object files into an executable.

137

Appendix A. Construction Variables

LINKCOMSTR

The string displayed when object files are linked into an executable. If this is not
set, then $LINKCOM (the command line) is displayed.
env = Environment(LINKCOMSTR = "Linking $TARGET")

LINKFLAGS

General user options passed to the linker. Note that this variable should not con-
tain -l (or similar) options for linking with the libraries listed in $LIBS, nor -L
(or similar) library search path options that scons generates automatically from
$LIBPATH. See $_LIBFLAGS above, for the variable that expands to library-link
options, and $_LIBDIRFLAGS above, for the variable that expands to library
search path options.

M4

The M4 macro preprocessor.

M4COM

The command line used to pass files through the M4 macro preprocessor.

M4COMSTR

The string displayed when a file is passed through the M4 macro preprocessor.
If this is not set, then $M4COM (the command line) is displayed.

M4FLAGS

General options passed to the M4 macro preprocessor.

MAKEINDEX

The makeindex generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

MAKEINDEXCOM

The command line used to call the makeindex generator for the TeX formatter
and typesetter and the LaTeX structured formatter and typesetter.

MAKEINDEXCOMSTR

The string displayed when calling the makeindex generator for the TeX formatter
and typesetter and the LaTeX structured formatter and typesetter. If this is not
set, then $MAKEINDEXCOM (the command line) is displayed.

MAKEINDEXFLAGS

General options passed to the makeindex generator for the TeX formatter and
typesetter and the LaTeX structured formatter and typesetter.

MAXLINELENGTH

The maximum number of characters allowed on an external command line. On
Win32 systems, link lines longer than this many characters are linked via a tem-
porary file name.

MSVS

When the Microsoft Visual Studio tools are initialized, they set up this dictionary
with the following keys:

VERSION: the version of MSVS being used (can be set via MSVS_VERSION)

138

Appendix A. Construction Variables

VERSIONS: the available versions of MSVS installed

VCINSTALLDIR: installed directory of Visual C++

VSINSTALLDIR: installed directory of Visual Studio

FRAMEWORKDIR: installed directory of the .NET framework

FRAMEWORKVERSIONS: list of installed versions of the .NET framework,
sorted latest to oldest.

FRAMEWORKVERSION: latest installed version of the .NET framework

FRAMEWORKSDKDIR: installed location of the .NET SDK.

PLATFORMSDKDIR: installed location of the Platform SDK.

PLATFORMSDK_MODULES: dictionary of installed Platform SDK modules,
where the dictionary keys are keywords for the various modules, and the
values are 2-tuples where the first is the release date, and the second is the
version number.

If a value isn’t set, it wasn’t available in the registry.

MSVS_IGNORE_IDE_PATHS

Tells the MS Visual Studio tools to use minimal INCLUDE, LIB, and PATH set-
tings, instead of the settings from the IDE.

For Visual Studio, SCons will (by default) automatically determine where MSVS
is installed, and use the LIB, INCLUDE, and PATH variables set by the IDE.
You can override this behavior by setting these variables after Environment ini-
tialization, or by setting MSVS_IGNORE_IDE_PATHS = 1 in the Environment
initialization. Specifying this will not leave these unset, but will set them to a
minimal set of paths needed to run the tools successfully.

For VS6, the mininimal set is:
INCLUDE:’ <VSDir >\VC98\ATL\include; <VSDir >\VC98\MFC\include; <VSDir >\VC98\include’
LIB:’ <VSDir >\VC98\MFC\lib; <VSDir >\VC98\lib’
PATH:’ <VSDir >\Common\MSDev98\bin; <VSDir >\VC98\bin’

For VS7, it is:
INCLUDE:’ <VSDir >\Vc7\atlmfc\include; <VSDir >\Vc7\include’
LIB:’ <VSDir >\Vc7\atlmfc\lib; <VSDir >\Vc7\lib’
PATH:’ <VSDir >\Common7\Tools\bin; <VSDir >\Common7\Tools; <VSDir >\Vc7\bin’

Where ’<VSDir>’ is the installed location of Visual Studio.

MSVS_PROJECT_BASE_PATH

The string placed in a generated Microsoft Visual Studio solution file as
the value of the SccProjectFilePathRelativizedFromConnection0 and
SccProjectFilePathRelativizedFromConnection1 attributes of the
GlobalSection(SourceCodeControl) section. There is no default value.

MSVS_PROJECT_GUID

The string placed in a generated Microsoft Visual Studio project file as the value
of the ProjectGUID attribute. The string is also placed in the SolutionUniqueID
attribute of the GlobalSection(SourceCodeControl) section of the Microsoft
Visual Studio solution file. There is no default value.

139

Appendix A. Construction Variables

MSVS_SCC_AUX_PATH

The path name placed in a generated Microsoft Visual Studio project file as the
value of the SccAuxPath attribute if the MSVS_SCC_PROVIDER construction
variable is also set. There is no default value.

MSVS_SCC_LOCAL_PATH

The path name placed in a generated Microsoft Visual Studio project file as the
value of the SccLocalPath attribute if the MSVS_SCC_PROVIDER construction
variable is also set. The path name is also placed in the SccLocalPath0 and
SccLocalPath1 attributes of the GlobalSection(SourceCodeControl) section
of the Microsoft Visual Studio solution file. There is no default value.

MSVS_SCC_PROJECT_NAME

The project name placed in a generated Microsoft Visual Studio project file as the
value of the SccProjectName attribute. There is no default value.

MSVS_SCC_PROVIDER

The string placed in a generated Microsoft Visual Studio project file as the value
of the SccProvider attribute. The string is also placed in the SccProvider1 at-
tribute of the GlobalSection(SourceCodeControl) section of the Microsoft Vi-
sual Studio solution file. There is no default value.

MSVS_USE_MFC_DIRS

Tells the MS Visual Studio tool(s) to use the MFC directories in its
default paths for compiling and linking. Under MSVS version 6, setting
MSVS_USE_MFC_DIRS to a non-zero value adds the ATL\include and
MFC\include directories to the default INCLUDE external environment
variable, and adds the MFC\lib directory to the default LIB external
environment variable. Under MSVS version 7, setting MSVS_USE_MFC_DIRS
to a non-zero value adds the atlmfc\include directory to the default INCLUDE
external environment variable, and adds the atlmfc\lib directory to the default
LIB external environment variable. The current default value is 1, which means
these directories are added to the paths by default. This default value is likely
to change in a future release, so users who want the ATL and MFC values
included in their paths are encouraged to enable the MSVS_USE_MFC_DIRS
value explicitly to avoid future incompatibility. This variable has no effect if the
INCLUDE or LIB environment variables are set explictly.

MSVS_VERSION

Sets the preferred version of MSVS to use.

SCons will (by default) select the latest version of MSVS installed on your ma-
chine. So, if you have version 6 and version 7 (MSVS .NET) installed, it will
prefer version 7. You can override this by specifying the MSVS_VERSION vari-
able in the Environment initialization, setting it to the appropriate version (’6.0’
or ’7.0’, for example). If the given version isn’t installed, tool initialization will
fail.

MSVSBUILDCOM

The build command line placed in a generated Microsoft Visual Studio project
file. The default is to have Visual Studio invoke SCons with any specified build
targets.

MSVSCLEANCOM

The clean command line placed in a generated Microsoft Visual Studio project
file. The default is to have Visual Studio invoke SCons with the -c option to

140

Appendix A. Construction Variables

remove any specified targets.

MSVSENCODING

The encoding string placed in a generated Microsoft Visual Studio project file.
The default is encoding Windows-1252 .

MSVSPROJECTCOM

The action used to generate Microsoft Visual Studio project files.

MSVSPROJECTSUFFIX

The suffix used for Microsoft Visual Studio project (DSP) files. The default value
is .vcproj when using Visual Studio version 7.x (.NET), and .dsp when using
earlier versions of Visual Studio.

MSVSREBUILDCOM

The rebuild command line placed in a generated Microsoft Visual Studio project
file. The default is to have Visual Studio invoke SCons with any specified rebuild
targets.

MSVSSCONS

The SCons used in generated Microsoft Visual Studio project files. The default is
the version of SCons being used to generate the project file.

MSVSSCONSCOM

The default SCons command used in generated Microsoft Visual Studio project
files.

MSVSSCONSCRIPT

The sconscript file (that is, SConstruct or SConscript file) that will be invoked
by Visual Studio project files (through the $MSVSSCONSCOM variable). The
default is the same sconscript file that contains the call to MSVSProject to build
the project file.

MSVSSCONSFLAGS

The SCons flags used in generated Microsoft Visual Studio project files.

MSVSSOLUTIONCOM

The action used to generate Microsoft Visual Studio solution files.

MSVSSOLUTIONSUFFIX

The suffix used for Microsoft Visual Studio solution (DSW) files. The default
value is .sln when using Visual Studio version 7.x (.NET), and .dsw when using
earlier versions of Visual Studio.

MWCW_VERSION

The version number of the MetroWerks CodeWarrior C compiler to be used.

MWCW_VERSIONS

A list of installed versions of the MetroWerks CodeWarrior C compiler on this
system.

no_import_lib

When set to non-zero, suppresses creation of a corresponding Windows static
import lib by the SharedLibrary builder when used with MinGW, Microsoft

141

Appendix A. Construction Variables

Visual Studio or Metrowerks. This also suppresses creation of an export (.exp)
file when using Microsoft Visual Studio.

OBJPREFIX

The prefix used for (static) object file names.

OBJSUFFIX

The suffix used for (static) object file names.

P4

The Perforce executable.

P4COM

The command line used to fetch source files from Perforce.

P4COMSTR

The string displayed when fetching a source file from Perforce. If this is not set,
then $P4COM (the command line) is displayed.

P4FLAGS

General options that are passed to Perforce.

PCH

The Microsoft Visual C++ precompiled header that will be used when compil-
ing object files. This variable is ignored by tools other than Microsoft Visual C++.
When this variable is defined SCons will add options to the compiler command
line to cause it to use the precompiled header, and will also set up the dependen-
cies for the PCH file. Example:
env[’PCH’] = ’StdAfx.pch’

PCHCOM

The command line used by the PCHbuilder to generated a precompiled header.

PCHCOMSTR

The string displayed when generating a precompiled header. If this is not set,
then $PCHCOM (the command line) is displayed.

PCHSTOP

This variable specifies how much of a source file is precompiled. This variable is
ignored by tools other than Microsoft Visual C++, or when the PCH variable is
not being used. When this variable is define it must be a string that is the name
of the header that is included at the end of the precompiled portion of the source
files, or the empty string if the "#pragma hrdstop" construct is being used:
env[’PCHSTOP’] = ’StdAfx.h’

PDB

The Microsoft Visual C++ PDB file that will store debugging information for
object files, shared libraries, and programs. This variable is ignored by tools other
than Microsoft Visual C++. When this variable is defined SCons will add options
to the compiler and linker command line to cause them to generate external
debugging information, and will also set up the dependencies for the PDB file.
Example:

142

Appendix A. Construction Variables

env[’PDB’] = ’hello.pdb’

The Visual C++ compiler switch that SCons uses by default to generate PDB
information is /Z7 . This works correctly with parallel (-j) builds because it em-
beds the debug information in the intermediate object files, as opposed to shar-
ing a single PDB file between multiple object files. This is also the only way to
get debug information embedded into a static library. Using the /Zi instead may
yield improved link-time performance, although parallel builds will no longer
work. You can generate PDB files with the /Zi switch by overriding the default
$CCPDBFLAGS variable; see the entry for that variable for specific examples.

PDFCOM

A deprecated synonym for $DVIPDFCOM.

PDFPREFIX

The prefix used for PDF file names.

PDFSUFFIX

The suffix used for PDF file names.

PKGCHK

On Solaris systems, the package-checking program that will be used (along with
$PKGINFO) to look for installed versions of the Sun PRO C++ compiler. The
default is /usr/sbin/pgkchk .

PKGINFO

On Solaris systems, the package information program that will be used (along
with $PKGCHK) to look for installed versions of the Sun PRO C++ compiler.
The default is pkginfo .

PLATFORM

The name of the platform used to create the Environment. If no platform is spec-
ified when the Environment is created, scons autodetects the platform.
env = Environment(tools = [])
if env[’PLATFORM’] == ’cygwin’:

Tool(’mingw’)(env)
else:

Tool(’msvc’)(env)

PRINT_CMD_LINE_FUNC

A Python function used to print the command lines as they are executed (as-
suming command printing is not disabled by the -q or -s options or their equiv-
alents). The function should take four arguments: s , the command being exe-
cuted (a string), target , the target being built (file node, list, or string name(s)),
source , the source(s) used (file node, list, or string name(s)), and env , the envi-
ronment being used.

The function must do the printing itself. The default implementation, used if this
variable is not set or is None, is:
def print_cmd_line(s, target, source, env):

sys.stdout.write(s + "\n")

Here’s an example of a more interesting function:
def print_cmd_line(s, target, source, env):

sys.stdout.write("Building %s -> %s...\n" %

143

Appendix A. Construction Variables

(’ and ’.join([str(x) for x in source]),
’ and ’.join([str(x) for x in target])))

env=Environment(PRINT_CMD_LINE_FUNC=print_cmd_line)
env.Program(’foo’, ’foo.c’)

This just prints "Building targetname from sourcename ..." instead of the actual
commands. Such a function could also log the actual commands to a log file, for
example.

PROGPREFIX

The prefix used for executable file names.

PROGSUFFIX

The suffix used for executable file names.

PSCOM

The command line used to convert TeX DVI files into a PostScript file.

PSCOMSTR

The string displayed when a TeX DVI file is converted into a PostScript file. If
this is not set, then $PSCOM (the command line) is displayed.

PSPREFIX

The prefix used for PostScript file names.

PSSUFFIX

The prefix used for PostScript file names.

QT_AUTOSCAN

Turn off scanning for mocable files. Use the Moc Builder to explicitely specify
files to run moc on.

QT_BINPATH

The path where the qt binaries are installed. The default value is ’$QTDIR/bin’.

QT_CPPPATH

The path where the qt header files are installed. The default value is
’$QTDIR/include’. Note: If you set this variable to None, the tool won’t change
the $CPPPATH construction variable.

QT_DEBUG

Prints lots of debugging information while scanning for moc files.

QT_LIB

Default value is ’qt’. You may want to set this to ’qt-mt’. Note: If you set this
variable to None, the tool won’t change the $LIBS variable.

QT_LIBPATH

The path where the qt libraries are installed. The default value is ’$QTDIR/lib’.
Note: If you set this variable to None, the tool won’t change the $LIBPATH con-
struction variable.

QT_MOC

Default value is ’$QT_BINPATH/moc’.

144

Appendix A. Construction Variables

QT_MOCCXXPREFIX

Default value is ”. Prefix for moc output files, when source is a cxx file.

QT_MOCCXXSUFFIX

Default value is ’.moc’. Suffix for moc output files, when source is a cxx file.

QT_MOCFROMCPPFLAGS

Default value is ’-i’. These flags are passed to moc, when moccing a cpp file.

QT_MOCFROMCXXCOM

Command to generate a moc file from a cpp file.

QT_MOCFROMCXXCOMSTR

The string displayed when generating a moc file from a cpp file. If this is not set,
then $QT_MOCFROMCXXCOM (the command line) is displayed.

QT_MOCFROMHCOM

Command to generate a moc file from a header.

QT_MOCFROMHCOMSTR

The string displayed when generating a moc file from a cpp file. If this is not set,
then $QT_MOCFROMHCOM (the command line) is displayed.

QT_MOCFROMHFLAGS

Default value is ”. These flags are passed to moc, when moccing a header file.

QT_MOCHPREFIX

Default value is ’moc_’. Prefix for moc output files, when source is a header.

QT_MOCHSUFFIX

Default value is ’$CXXFILESUFFIX’. Suffix for moc output files, when source is
a header.

QT_UIC

Default value is ’$QT_BINPATH/uic’.

QT_UICCOM

Command to generate header files from .ui files.

QT_UICCOMSTR

The string displayed when generating header files from .ui files. If this is not set,
then $QT_UICCOM (the command line) is displayed.

QT_UICDECLFLAGS

Default value is ”. These flags are passed to uic, when creating a a h file from a
.ui file.

QT_UICDECLPREFIX

Default value is ”. Prefix for uic generated header files.

QT_UICDECLSUFFIX

Default value is ’.h’. Suffix for uic generated header files.

145

Appendix A. Construction Variables

QT_UICIMPLFLAGS

Default value is ”. These flags are passed to uic, when creating a cxx file from a
.ui file.

QT_UICIMPLPREFIX

Default value is ’uic_’. Prefix for uic generated implementation files.

QT_UICIMPLSUFFIX

Default value is ’$CXXFILESUFFIX’. Suffix for uic generated implementation
files.

QT_UISUFFIX

Default value is ’.ui’. Suffix of designer input files.

QTDIR

The qt tool tries to take this from os.environ. It also initializes all QT_* construc-
tion variables listed below. (Note that all paths are constructed with python’s
os.path.join() method, but are listed here with the ’/’ separator for easier read-
ing.) In addition, the construction environment variables $CPPPATH, $LIBPATH
and $LIBS may be modified and the variables PROGEMITTER, SHLIBEMITTER
and LIBEMITTER are modified. Because the build-performance is affected when
using this tool, you have to explicitly specify it at Environment creation:
Environment(tools=[’default’,’qt’])

The qt tool supports the following operations:

Automatic moc file generation from header files. You do not have to specify moc files
explicitly, the tool does it for you. However, there are a few preconditions to do
so: Your header file must have the same filebase as your implementation file and
must stay in the same directory. It must have one of the suffixes .h, .hpp, .H, .hxx,
.hh. You can turn off automatic moc file generation by setting QT_AUTOSCAN
to 0. See also the corresponding builder method .B Moc()

Automatic moc file generation from cxx files. As stated in the qt
documentation, include the moc file at the end of the cxx file. Note that
you have to include the file, which is generated by the transformation
${QT_MOCCXXPREFIX}<basename>${QT_MOCCXXSUFFIX}, by default
<basename>.moc. A warning is generated after building the moc file, if you
do not include the correct file. If you are using BuildDir, you may need to
specify duplicate=1. You can turn off automatic moc file generation by setting
QT_AUTOSCAN to 0. See also the corresponding Moc builder method.

Automatic handling of .ui files. The implementation files generated from .ui files
are handled much the same as yacc or lex files. Each .ui file given as a source
of Program, Library or SharedLibrary will generate three files, the declaration
file, the implementation file and a moc file. Because there are also generated
headers, you may need to specify duplicate=1 in calls to BuildDir. See also the
corresponding Uic builder method.

RANLIB

The archive indexer.

RANLIBCOM

The command line used to index a static library archive.

146

Appendix A. Construction Variables

RANLIBCOMSTR

The string displayed when a static library archive is indexed. If this is not set,
then $RANLIBCOM (the command line) is displayed.
env = Environment(RANLIBCOMSTR = "Indexing $TARGET")

RANLIBFLAGS

General options passed to the archive indexer.

RC

The resource compiler used to build a Microsoft Visual C++ resource file.

RCCOM

The command line used to build a Microsoft Visual C++ resource file.

RCCOMSTR

The string displayed when invoking the resource compiler to build a Microsoft
Visual C++ resource file. If this is not set, then $RCCOM (the command line) is
displayed.

RCFLAGS

The flags passed to the resource compiler by the RES builder.

RCS

The RCS executable. Note that this variable is not actually used for the command
to fetch source files from RCS; see the $RCS_CO construction variable, below.

RCS_CO

The RCS "checkout" executable, used to fetch source files from RCS.

RCS_COCOM

The command line used to fetch (checkout) source files from RCS.

RCS_COCOMSTR

The string displayed when fetching a source file from RCS. If this is not set, then
$RCS_COCOM (the command line) is displayed.

RCS_COFLAGS

Options that are passed to the $RCS_CO command.

RDirs

A function that converts a string into a list of Dir instances by searching the
repositories.

REGSVR

The program used on Windows systems to register a newly-built DLL library
whenever the SharedLibrary builder is passed a keyword argument of
register=1 .

REGSVRCOM

The command line used on Windows systems to register a newly-built DLL li-
brary whenever the SharedLibrary builder is passed a keyword argument of
register=1 .

147

Appendix A. Construction Variables

REGSVRCOMSTR

The string displayed when registering a newly-built DLL file. If this is not set,
then $REGSVRCOM (the command line) is displayed.

REGSVRFLAGS

Flags passed to the DLL registration program on Windows systems when a
newly-built DLL library is registered. By default, this includes the /s that pre-
vents dialog boxes from popping up and requiring user attention.

RMIC

The Java RMI stub compiler.

RMICCOM

The command line used to compile stub and skeleton class files from Java classes
that contain RMI implementations. Any options specified in the $RMICFLAGS
construction variable are included on this command line.

RMICCOMSTR

The string displayed when compiling stub and skeleton class files from Java
classes that contain RMI implementations. If this is not set, then $RMICCOM
(the command line) is displayed.
env = Environment(RMICCOMSTR = "Generating stub/skeleton class files $TARGETS from $SOURCES")

RMICFLAGS

General options passed to the Java RMI stub compiler.

_RPATH

An automatically-generated construction variable containing the rpath flags to
be used when linking a program with shared libraries. The value of $_RPATH
is created by appending $RPATHPREFIX and $RPATHSUFFIX to the beginning
and end of each directory in $RPATH.

RPATH

A list of paths to search for shared libraries when running programs. Currently
only used in the GNU (gnulink), IRIX (sgilink) and Sun (sunlink) linkers. Ig-
nored on platforms and toolchains that don’t support it. Note that the paths
added to RPATH are not transformed by scons in any way: if you want an ab-
solute path, you must make it absolute yourself.

RPATHPREFIX

The prefix used to specify a directory to be searched for shared libraries when
running programs. This will be appended to the beginning of each directory in
the $RPATH construction variable when the $_RPATH variable is automatically
generated.

RPATHSUFFIX

The suffix used to specify a directory to be searched for shared libraries when
running programs. This will be appended to the end of each directory in the
$RPATH construction variable when the $_RPATH variable is automatically gen-
erated.

RPCGEN

The RPC protocol compiler.

148

Appendix A. Construction Variables

RPCGENCLIENTFLAGS

Options passed to the RPC protocol compiler when generating client side stubs.
These are in addition to any flags specified in the $RPCGENFLAGS construction
variable.

RPCGENFLAGS

General options passed to the RPC protocol compiler.

RPCGENHEADERFLAGS

Options passed to the RPC protocol compiler when generating a header file.
These are in addition to any flags specified in the $RPCGENFLAGS construction
variable.

RPCGENSERVICEFLAGS

Options passed to the RPC protocol compiler when generating server side stubs.
These are in addition to any flags specified in the $RPCGENFLAGS construction
variable.

RPCGENXDRFLAGS

Options passed to the RPC protocol compiler when generating XDR routines.
These are in addition to any flags specified in the $RPCGENFLAGS construction
variable.

SCANNERS

A list of the available implicit dependency scanners. New file scanners may be
added by appending to this list, although the more flexible approach is to as-
sociate scanners with a specific Builder. See the sections "Builder Objects" and
"Scanner Objects," below, for more information.

SCCS

The SCCS executable.

SCCSCOM

The command line used to fetch source files from SCCS.

SCCSCOMSTR

The string displayed when fetching a source file from a CVS repository. If this is
not set, then $SCCSCOM (the command line) is displayed.

SCCSFLAGS

General options that are passed to SCCS.

SCCSGETFLAGS

Options that are passed specifically to the SCCS "get" subcommand. This can be
set, for example, to -e to check out editable files from SCCS.

SCONS_HOME

The (optional) path to the SCons library directory, initialized from the external
environment. If set, this is used to construct a shorter and more efficient search
path in the $MSVSSCONS command line executed from Microsoft Visual Studio
project files.

SHCC

The C compiler used for generating shared-library objects.

149

Appendix A. Construction Variables

SHCCCOM

The command line used to compile a C source file to a shared-library object file.
Any options specified in the $SHCFLAGS, $SHCCFLAGS and $CPPFLAGS con-
struction variables are included on this command line.

SHCCCOMSTR

The string displayed when a C source file is compiled to a shared object file. If
this is not set, then $SHCCCOM (the command line) is displayed.
env = Environment(SHCCCOMSTR = "Compiling shared object $TARGET")

SHCCFLAGS

Options that are passed to the C and C++ compilers to generate shared-library
objects.

SHCFLAGS

Options that are passed to the C compiler (only; not C++) to generate shared-
library objects.

SHCXX

The C++ compiler used for generating shared-library objects.

SHCXXCOM

The command line used to compile a C++ source file to a shared-library object
file. Any options specified in the $SHCXXFLAGS and $CPPFLAGS construction
variables are included on this command line.

SHCXXCOMSTR

The string displayed when a C++ source file is compiled to a shared object file.
If this is not set, then $SHCXXCOM (the command line) is displayed.
env = Environment(SHCXXCOMSTR = "Compiling shared object $TARGET")

SHCXXFLAGS

Options that are passed to the C++ compiler to generate shared-library objects.

SHELL

A string naming the shell program that will be passed to the $SPAWN function.
See the $SPAWN construction variable for more information.

SHF77

The Fortran 77 compiler used for generating shared-library objects. You should
normally set the $SHFORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. You only need to set $SHF77 if you need to
use a specific compiler or compiler version for Fortran 77 files.

SHF77COM

The command line used to compile a Fortran 77 source file to a shared-library
object file. You only need to set $SHF77COM if you need to use a specific com-
mand line for Fortran 77 files. You should normally set the $SHFORTRANCOM
variable, which specifies the default command line for all Fortran versions.

150

Appendix A. Construction Variables

SHF77COMSTR

The string displayed when a Fortran 77 source file is compiled to a shared-library
object file. If this is not set, then $SHF77COM or $SHFORTRANCOM (the com-
mand line) is displayed.

SHF77FLAGS

Options that are passed to the Fortran 77 compiler to generated shared-library
objects. You only need to set $SHF77FLAGS if you need to define specific user
options for Fortran 77 files. You should normally set the $SHFORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF77PPCOM

The command line used to compile a Fortran 77 source file to a shared-library
object file after first running the file through the C preprocessor. Any options
specified in the $SHF77FLAGS and $CPPFLAGS construction variables are in-
cluded on this command line. You only need to set $SHF77PPCOM if you need
to use a specific C-preprocessor command line for Fortran 77 files. You should
normally set the $SHFORTRANPPCOM variable, which specifies the default C-
preprocessor command line for all Fortran versions.

SHF90

The Fortran 90 compiler used for generating shared-library objects. You should
normally set the $SHFORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. You only need to set $SHF90 if you need to
use a specific compiler or compiler version for Fortran 90 files.

SHF90COM

The command line used to compile a Fortran 90 source file to a shared-library
object file. You only need to set $SHF90COM if you need to use a specific com-
mand line for Fortran 90 files. You should normally set the $SHFORTRANCOM
variable, which specifies the default command line for all Fortran versions.

SHF90COMSTR

The string displayed when a Fortran 90 source file is compiled to a shared-library
object file. If this is not set, then $SHF90COM or $SHFORTRANCOM (the com-
mand line) is displayed.

SHF90FLAGS

Options that are passed to the Fortran 90 compiler to generated shared-library
objects. You only need to set $SHF90FLAGS if you need to define specific user
options for Fortran 90 files. You should normally set the $SHFORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF90PPCOM

The command line used to compile a Fortran 90 source file to a shared-library
object file after first running the file through the C preprocessor. Any options
specified in the $SHF90FLAGS and $CPPFLAGS construction variables are in-
cluded on this command line. You only need to set $SHF90PPCOM if you need
to use a specific C-preprocessor command line for Fortran 90 files. You should
normally set the $SHFORTRANPPCOM variable, which specifies the default C-
preprocessor command line for all Fortran versions.

151

Appendix A. Construction Variables

SHF95

The Fortran 95 compiler used for generating shared-library objects. You should
normally set the $SHFORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. You only need to set $SHF95 if you need to
use a specific compiler or compiler version for Fortran 95 files.

SHF95COM

The command line used to compile a Fortran 95 source file to a shared-library
object file. You only need to set $SHF95COM if you need to use a specific com-
mand line for Fortran 95 files. You should normally set the $SHFORTRANCOM
variable, which specifies the default command line for all Fortran versions.

SHF95COMSTR

The string displayed when a Fortran 95 source file is compiled to a shared-library
object file. If this is not set, then $SHF95COM or $SHFORTRANCOM (the com-
mand line) is displayed.

SHF95FLAGS

Options that are passed to the Fortran 95 compiler to generated shared-library
objects. You only need to set $SHF95FLAGS if you need to define specific user
options for Fortran 95 files. You should normally set the $SHFORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF95PPCOM

The command line used to compile a Fortran 95 source file to a shared-library
object file after first running the file through the C preprocessor. Any options
specified in the $SHF95FLAGS and $CPPFLAGS construction variables are in-
cluded on this command line. You only need to set $SHF95PPCOM if you need
to use a specific C-preprocessor command line for Fortran 95 files. You should
normally set the $SHFORTRANPPCOM variable, which specifies the default C-
preprocessor command line for all Fortran versions.

SHFORTRAN

The default Fortran compiler used for generating shared-library objects.

SHFORTRANCOM

The command line used to compile a Fortran source file to a shared-library object
file.

SHFORTRANCOMSTR

The string displayed when a Fortran source file is compiled to a shared-library
object file. If this is not set, then $SHFORTRANCOM (the command line) is dis-
played.

SHFORTRANFLAGS

Options that are passed to the Fortran compiler to generate shared-library ob-
jects.

SHFORTRANPPCOM

The command line used to compile a Fortran source file to a shared-library ob-
ject file after first running the file through the C preprocessor. Any options spec-
ified in the $SHFORTRANFLAGS and $CPPFLAGS construction variables are
included on this command line.

152

Appendix A. Construction Variables

SHLIBPREFIX

The prefix used for shared library file names.

SHLIBSUFFIX

The suffix used for shared library file names.

SHLINK

The linker for programs that use shared libraries.

SHLINKCOM

The command line used to link programs using shared libaries.

SHLINKCOMSTR

The string displayed when programs using shared libraries are linked. If this is
not set, then $SHLINKCOM (the command line) is displayed.
env = Environment(SHLINKCOMSTR = "Linking shared $TARGET")

SHLINKFLAGS

General user options passed to the linker for programs using shared libraries.
Note that this variable should not contain -l (or similar) options for linking with
the libraries listed in $LIBS, nor -L (or similar) include search path options that
scons generates automatically from $LIBPATH. See $_LIBFLAGS above, for the
variable that expands to library-link options, and $_LIBDIRFLAGS above, for
the variable that expands to library search path options.

SHOBJPREFIX

The prefix used for shared object file names.

SHOBJSUFFIX

The suffix used for shared object file names.

SOURCE

A reserved variable name that may not be set or used in a construction environ-
ment. (See "Variable Substitution," below.)

SOURCES

A reserved variable name that may not be set or used in a construction environ-
ment. (See "Variable Substitution," below.)

SPAWN

A command interpreter function that will be called to execute command line
strings. The function must expect the following arguments:
def spawn(shell, escape, cmd, args, env):

sh is a string naming the shell program to use. escape is a function that can
be called to escape shell special characters in the command line. cmd is the path
to the command to be executed. args is the arguments to the command. env
is a dictionary of the environment variables in which the command should be
executed.

SWIG

The scripting language wrapper and interface generator.

153

Appendix A. Construction Variables

SWIGCFILESUFFIX

The suffix that will be used for intermediate C source files generated by the
scripting language wrapper and interface generator. The default value is
_wrap $CFILESUFFIX. By default, this value is used whenever the -c++ option
is not specified as part of the $SWIGFLAGS construction variable.

SWIGCOM

The command line used to call the scripting language wrapper and interface
generator.

SWIGCOMSTR

The string displayed when calling the scripting language wrapper and interface
generator. If this is not set, then $SWIGCOM (the command line) is displayed.

SWIGCXXFILESUFFIX

The suffix that will be used for intermediate C++ source files generated by
the scripting language wrapper and interface generator. The default value is
_wrap $CFILESUFFIX. By default, this value is used whenever the -c++ option
is specified as part of the $SWIGFLAGS construction variable.

SWIGFLAGS

General options passed to the scripting language wrapper and interface gener-
ator. This is where you should set -python , -perl5 , -tcl , or whatever other
options you want to specify to SWIG. If you set the -c++ option in this variable,
scons will, by default, generate a C++ intermediate source file with the exten-
sion that is specified as the $CXXFILESUFFIX variable.

TAR

The tar archiver.

TARCOM

The command line used to call the tar archiver.

TARCOMSTR

The string displayed when archiving files using the tar archiver. If this is not set,
then $TARCOM (the command line) is displayed.
env = Environment(TARCOMSTR = "Archiving $TARGET")

TARFLAGS

General options passed to the tar archiver.

TARGET

A reserved variable name that may not be set or used in a construction environ-
ment. (See "Variable Substitution," below.)

TARGETS

A reserved variable name that may not be set or used in a construction environ-
ment. (See "Variable Substitution," below.)

TARSUFFIX

The suffix used for tar file names.

154

Appendix A. Construction Variables

TEMPFILEPREFIX

The prefix for a temporary file used to execute lines longer than $MAXLINE-
LENGTH. The default is ’@’. This may be set for toolchains that use other values,
such as ’-@’ for the diab compiler or ’-via’ for ARM toolchain.

TEX

The TeX formatter and typesetter.

TEXCOM

The command line used to call the TeX formatter and typesetter.

TEXCOMSTR

The string displayed when calling the TeX formatter and typesetter. If this is not
set, then $TEXCOM (the command line) is displayed.
env = Environment(TEXCOMSTR = "Building $TARGET from TeX input $SOURCES")

TEXFLAGS

General options passed to the TeX formatter and typesetter.

TEXINPUTS

List of directories that the LaTeX programm will search for include directories.
The LaTeX implicit dependency scanner will search these directories for \in-
clude and \import files.

TOOLS

A list of the names of the Tool specifications that are part of this construction
environment.

WIN32_INSERT_DEF

A deprecated synonym for $WINDOWS_INSERT_DEF.

WIN32DEFPREFIX

A deprecated synonym for $WINDOWSDEFPREFIX.

WIN32DEFSUFFIX

A deprecated synonym for $WINDOWSDEFSUFFIX.

WIN32EXPPREFIX

A deprecated synonym for $WINDOWSEXPSUFFIX.

WIN32EXPSUFFIX

A deprecated synonym for $WINDOWSEXPSUFFIX.

WINDOWS_INSERT_DEF

When this is set to true, a library build of a Windows shared library (.dll file)
will also build a corresponding .def file at the same time, if a .def file is not
already listed as a build target. The default is 0 (do not build a .def file).

WINDOWS_INSERT_MANIFEST

When this is set to true, scons will be aware of the .manifest files generated by
Microsoft Visua C/C++ 8.

155

Appendix A. Construction Variables

WINDOWSDEFPREFIX

The prefix used for Windows .def file names.

WINDOWSDEFSUFFIX

The suffix used for Windows .def file names.

WINDOWSEXPPREFIX

The prefix used for Windows .exp file names.

WINDOWSEXPSUFFIX

The suffix used for Windows .exp file names.

WINDOWSPROGMANIFESTPREFIX

The prefix used for executable program .manifest files generated by Microsoft
Visual C/C++.

WINDOWSPROGMANIFESTSUFFIX

The suffix used for executable program .manifest files generated by Microsoft
Visual C/C++.

WINDOWSSHLIBMANIFESTPREFIX

The prefix used for shared library .manifest files generated by Microsoft Visual
C/C++.

WINDOWSSHLIBMANIFESTSUFFIX

The suffix used for shared library .manifest files generated by Microsoft Visual
C/C++.

YACC

The parser generator.

YACCCOM

The command line used to call the parser generator to generate a source file.

YACCCOMSTR

The string displayed when generating a source file using the parser generator. If
this is not set, then $YACCCOM (the command line) is displayed.
env = Environment(YACCCOMSTR = "Yacc’ing $TARGET from $SOURCES")

YACCFLAGS

General options passed to the parser generator. If $YACCFLAGS contains a -d
option, SCons assumes that the call will also create a .h file (if the yacc source file
ends in a .y suffix) or a .hpp file (if the yacc source file ends in a .yy suffix)

YACCHFILESUFFIX

The suffix of the C header file generated by the parser generator when the -d
option is used. Note that setting this variable does not cause the parser generator
to generate a header file with the specified suffix, it exists to allow you to specify
what suffix the parser generator will use of its own accord. The default value is
.h .

156

Appendix A. Construction Variables

YACCHXXFILESUFFIX

The suffix of the C++ header file generated by the parser generator when the -d
option is used. Note that setting this variable does not cause the parser generator
to generate a header file with the specified suffix, it exists to allow you to specify
what suffix the parser generator will use of its own accord. The default value is
.hpp .

YACCVCGFILESUFFIX

The suffix of the file containing the VCG grammar automaton definition when
the --graph= option is used. Note that setting this variable does not cause the
parser generator to generate a VCG file with the specified suffix, it exists to allow
you to specify what suffix the parser generator will use of its own accord. The
default value is .vcg .

ZIP

The zip compression and file packaging utility.

ZIPCOM

The command line used to call the zip utility, or the internal Python function
used to create a zip archive.

ZIPCOMPRESSION

The compression flag from the Python zipfile module used by the internal
Python function to control whether the zip archive is compressed or not. The de-
fault value is zipfile.ZIP_DEFLATED , which creates a compressed zip archive.
This value has no effect when using Python 1.5.2 or if the zipfile module is
otherwise unavailable.

ZIPCOMSTR

The string displayed when archiving files using the zip utility. If this is not set,
then $ZIPCOM (the command line or internal Python function) is displayed.
env = Environment(ZIPCOMSTR = "Zipping $TARGET")

ZIPFLAGS

General options passed to the zip utility.

157

Appendix A. Construction Variables

158

Appendix B. Builders

This appendix contains descriptions of all of the Builders that are potentially available
"out of the box" in this version of SCons.

CFile()
env.CFile()

Builds a C source file given a lex (.l) or yacc (.y) input file. The suffix speci-
fied by the $CFILESUFFIX construction variable (.c by default) is automatically
added to the target if it is not already present. Example:
builds foo.c
env.CFile(target = ’foo.c’, source = ’foo.l’)
builds bar.c
env.CFile(target = ’bar’, source = ’bar.y’)

CXXFile()
env.CXXFile()

Builds a C++ source file given a lex (.ll) or yacc (.yy) input file. The suffix
specified by the $CXXFILESUFFIX construction variable (.cc by default) is au-
tomatically added to the target if it is not already present. Example:
builds foo.cc
env.CXXFile(target = ’foo.cc’, source = ’foo.ll’)
builds bar.cc
env.CXXFile(target = ’bar’, source = ’bar.yy’)

DVI()
env.DVI()

Builds a .dvi file from a .tex , .ltx or .latex input file. If the source file suffix
is .tex , scons will examine the contents of the file; if the string \documentclass
or \documentstyle is found, the file is assumed to be a LaTeX file and the target
is built by invoking the $LATEXCOM command line; otherwise, the $TEXCOM
command line is used. If the file is a LaTeX file, the DVI builder method will also
examine the contents of the .aux file and invoke the $BIBTEX command line if
the string bibdata is found, start $MAKEINDEX to generate an index if a .ind
file is found and will examine the contents .log file and re-run the $LATEXCOM
command if the log file says it is necessary.

The suffix .dvi (hard-coded within TeX itself) is automatically added to the tar-
get if it is not already present. Examples:
builds from aaa.tex
env.DVI(target = ’aaa.dvi’, source = ’aaa.tex’)
builds bbb.dvi
env.DVI(target = ’bbb’, source = ’bbb.ltx’)
builds from ccc.latex
env.DVI(target = ’ccc.dvi’, source = ’ccc.latex’)

Jar()
env.Jar()

Builds a Java archive (.jar) file from a source tree of .class files. If the
$JARCHDIR value is set, the jar command will change to the specified
directory using the -C option. If the contents any of the source files begin with
the string Manifest-Version , the file is assumed to be a manifest and is passed
to the jar command with the moption set.

159

Appendix B. Builders

env.Jar(target = ’foo.jar’, source = ’classes’)

Java()
env.Java()

Builds one or more Java class files from one or more source trees of .java files.
The class files will be placed underneath the specified target directory. SCons
will parse each source .java file to find the classes (including inner classes) de-
fined within that file, and from that figure out the target .class files that will be
created. SCons will also search each Java file for the Java package name, which
it assumes can be found on a line beginning with the string package in the first
column; the resulting .class files will be placed in a directory reflecting the
specified package name. For example, the file Foo.java defining a single public
Foo class and containing a package name of sub.dir will generate a correspond-
ing sub/dir/Foo.class class file.

Example:
env.Java(target = ’classes’, source = ’src’)
env.Java(target = ’classes’, source = [’src1’, ’src2’])

JavaH()
env.JavaH()

Builds C header and source files for implementing Java native methods. The
target can be either a directory in which the header files will be written, or a
header file name which will contain all of the definitions. The source can be
either the names of .class files, or the objects returned from the Java builder
method.

If the construction variable $JAVACLASSDIR is set, either in the environment or
in the call to the JavaH builder method itself, then the value of the variable will
be stripped from the beginning of any .class file names.

Examples:
builds java_native.h
classes = env.Java(target = ’classdir’, source = ’src’)
env.JavaH(target = ’java_native.h’, source = classes)

builds include/package_foo.h and include/package_bar.h
env.JavaH(target = ’include’,

source = [’package/foo.class’, ’package/bar.class’])

builds export/foo.h and export/bar.h
env.JavaH(target = ’export’,

source = [’classes/foo.class’, ’classes/bar.class’],
JAVACLASSDIR = ’classes’)

Library()
env.Library()

A synonym for the StaticLibrary builder method.

LoadableModule()
env.LoadableModule()

On most systems, this is the same as SharedLibrary . On Mac OS X (Darwin)
platforms, this creates a loadable module bundle.

160

Appendix B. Builders

M4()
env.M4()

Builds an output file from an M4 input file. This uses a default $M4FLAGS value
of -E , which considers all warnings to be fatal and stops on the first warning
when using the GNU version of m4. Example:
env.M4(target = ’foo.c’, source = ’foo.c.m4’)

Moc()
env.Moc()

Builds an output file from a moc input file. Moc input files are either header files
or cxx files. This builder is only available after using the tool ’qt’. See the $QTDIR
variable for more information. Example:
env.Moc(’foo.h’) # generates moc_foo.cc
env.Moc(’foo.cpp’) # generates foo.moc

MSVSProject()
env.MSVSProject()

Builds a Microsoft Visual Studio project file, and by default builds a solution file
as well.

This builds a Visual Studio project file, based on the version of Visual Studio
that is configured (either the latest installed version, or the version specified by
$MSVS_VERSION in the Environment constructor). For Visual Studio 6, it will
generate a .dsp file. For Visual Studio 7 (.NET), it will generate a .dsp file.

By default, this also generates a solution file for the specified project, a .dsw file
for Visual Studio 6 or a .sln file for Visual Studio 7 (.NET). This behavior may be
disabled by specifying auto_build_solution=0 when you call MSVSProject ,
in which case you presumably want to build the solution file(s) by calling the
MSVSSolution Builder (see below).

It takes several lists of filenames to be placed into the project file. These are
currently limited to srcs , incs , localincs , resources , and misc . These are
pretty self-explanatory, but it should be noted that these lists are added to the
$SOURCES construction variable as strings, NOT as SCons File Nodes. This is
because they represent file names to be added to the project file, not the source
files used to build the project file.

The above filename lists are all optional, although at least one must be specified
for the resulting project file to be non-empty.

In addition to the above lists of values, the following values may be specified:

target : The name of the target .dsp or .vcproj file. The correct suffix for the
version of Visual Studio must be used, but the $MSVSPROJECTSUFFIX con-
struction variable will be defined to the correct value (see example below).

variant : The name of this particular variant. For Visual Studio 7 projects, this
can also be a list of variant names. These are typically things like "Debug" or
"Release", but really can be anything you want. For Visual Studio 7 projects, they
may also specify a target platform separated from the variant name by a | (ver-
tical pipe) character: Debug|Xbox . The default target platform is Win32. Multi-
ple calls to MSVSProject with different variants are allowed; all variants will be
added to the project file with their appropriate build targets and sources.

buildtarget : An optional string, node, or list of strings or nodes (one per build
variant), to tell the Visual Studio debugger what output target to use in what
build variant. The number of buildtarget entries must match the number of
variant entries.

161

Appendix B. Builders

runfile : The name of the file that Visual Studio 7 and later will run and debug.
This appears as the value of the Output field in the resutling Visual Studio project
file. If this is not specified, the default is the same as the specified buildtarget
value.

Example usage:
barsrcs = [’bar.cpp’],
barincs = [’bar.h’],
barlocalincs = [’StdAfx.h’]
barresources = [’bar.rc’,’resource.h’]
barmisc = [’bar_readme.txt’]

dll = env.SharedLibrary(target = ’bar.dll’,
source = barsrcs)

env.MSVSProject(target = ’Bar’ + env[’MSVSPROJECTSUFFIX’],
srcs = barsrcs,
incs = barincs,
localincs = barlocalincs,
resources = barresources,
misc = barmisc,
buildtarget = dll,
variant = ’Release’)

MSVSSolution()
env.MSVSSolution()

Builds a Microsoft Visual Studio solution file.

This builds a Visual Studio solution file, based on the version of Visual Studio
that is configured (either the latest installed version, or the version specified by
$MSVS_VERSION in the construction environment). For Visual Studio 6, it will
generate a .dsw file. For Visual Studio 7 (.NET), it will generate a .sln file.

The following values must be specified:

target : The name of the target .dsw or .sln file. The correct suffix for the version
of Visual Studio must be used, but the value $MSVSSOLUTIONSUFFIX will be
defined to the correct value (see example below).

variant : The name of this particular variant, or a list of variant names (the latter
is only supported for MSVS 7 solutions). These are typically things like "Debug"
or "Release", but really can be anything you want. For MSVS 7 they may also
specify target platform, like this "Debug|Xbox". Default platform is Win32.

projects : A list of project file names, or Project nodes returned by calls to the
MSVSProject Builder, to be placed into the solution file. (NOTE: Currently only
one project is supported per solution.) It should be noted that these file names are
NOT added to the $SOURCES environment variable in form of files, but rather
as strings. This is because they represent file names to be added to the solution
file, not the source files used to build the solution file.

Example Usage:
env.MSVSSolution(target = ’Bar’ + env[’MSVSSOLUTIONSUFFIX’],

projects = [’bar’ + env[’MSVSPROJECTSUFFIX’]],
variant = ’Release’)

Object()
env.Object()

A synonym for the StaticObject builder method.

162

Appendix B. Builders

PCH()
env.PCH()

Builds a Microsoft Visual C++ precompiled header. Calling this builder method
returns a list of two targets: the PCH as the first element, and the object file as
the second element. Normally the object file is ignored. This builder method is
only provided when Microsoft Visual C++ is being used as the compiler. The
PCH builder method is generally used in conjuction with the PCH construction
variable to force object files to use the precompiled header:
env[’PCH’] = env.PCH(’StdAfx.cpp’)[0]

PDF()
env.PDF()

Builds a .pdf file from a .dvi input file (or, by extension, a .tex , .ltx , or .latex
input file). The suffix specified by the $PDFSUFFIX construction variable (.pdf
by default) is added automatically to the target if it is not already present. Exam-
ple:
builds from aaa.tex
env.PDF(target = ’aaa.pdf’, source = ’aaa.tex’)
builds bbb.pdf from bbb.dvi
env.PDF(target = ’bbb’, source = ’bbb.dvi’)

PostScript()
env.PostScript()

Builds a .ps file from a .dvi input file (or, by extension, a .tex , .ltx , or .latex
input file). The suffix specified by the $PSSUFFIX construction variable (.ps by
default) is added automatically to the target if it is not already present. Example:
builds from aaa.tex
env.PostScript(target = ’aaa.ps’, source = ’aaa.tex’)
builds bbb.ps from bbb.dvi
env.PostScript(target = ’bbb’, source = ’bbb.dvi’)

Program()
env.Program()

Builds an executable given one or more object files or C, C++, D, or Fortran
source files. If any C, C++, D or Fortran source files are specified, then they will
be automatically compiled to object files using the Object builder method; see
that builder method’s description for a list of legal source file suffixes and how
they are interpreted. The target executable file prefix (specified by the $PROG-
PREFIX construction variable; nothing by default) and suffix (specified by the
$PROGSUFFIX construction variable; by default, .exe on Windows systems,
nothing on POSIX systems) are automatically added to the target if not already
present. Example:
env.Program(target = ’foo’, source = [’foo.o’, ’bar.c’, ’baz.f’])

RES()
env.RES()

Builds a Microsoft Visual C++ resource file. This builder method is only pro-
vided when Microsoft Visual C++ or MinGW is being used as the compiler. The
.res (or .o for MinGW) suffix is added to the target name if no other suffix is
given. The source file is scanned for implicit dependencies as though it were a C
file. Example:

163

Appendix B. Builders

env.RES(’resource.rc’)

RMIC()
env.RMIC()

Builds stub and skeleton class files for remote objects from Java .class files.
The target is a directory relative to which the stub and skeleton class files will be
written. The source can be the names of .class files, or the objects return from
the Java builder method.

If the construction variable $JAVACLASSDIR is set, either in the environment or
in the call to the RMIC builder method itself, then the value of the variable will
be stripped from the beginning of any .class file names.
classes = env.Java(target = ’classdir’, source = ’src’)
env.RMIC(target = ’outdir1’, source = classes)

env.RMIC(target = ’outdir2’,
source = [’package/foo.class’, ’package/bar.class’])

env.RMIC(target = ’outdir3’,
source = [’classes/foo.class’, ’classes/bar.class’],
JAVACLASSDIR = ’classes’)

RPCGenClient()
env.RPCGenClient()

Generates an RPC client stub (_clnt.c) file from a specified RPC (.x) source file.
Because rpcgen only builds output files in the local directory, the command will
be executed in the source file’s directory by default.
Builds src/rpcif_clnt.c
env.RPCGenClient(’src/rpcif.x’)

RPCGenHeader()
env.RPCGenHeader()

Generates an RPC header (.h) file from a specified RPC (.x) source file. Because
rpcgen only builds output files in the local directory, the command will be exe-
cuted in the source file’s directory by default.
Builds src/rpcif.h
env.RPCGenHeader(’src/rpcif.x’)

RPCGenService()
env.RPCGenService()

Generates an RPC server-skeleton (_svc.c) file from a specified RPC (.x) source
file. Because rpcgen only builds output files in the local directory, the command
will be executed in the source file’s directory by default.
Builds src/rpcif_svc.c
env.RPCGenClient(’src/rpcif.x’)

RPCGenXDR()
env.RPCGenXDR()

Generates an RPC XDR routine (_xdr.c) file from a specified RPC (.x) source
file. Because rpcgen only builds output files in the local directory, the command
will be executed in the source file’s directory by default.

164

Appendix B. Builders

Builds src/rpcif_xdr.c
env.RPCGenClient(’src/rpcif.x’)

SharedLibrary()
env.SharedLibrary()

Builds a shared library (.so on a POSIX system, .dll on Windows) given one
or more object files or C, C++, D or Fortran source files. If any source files are
given, then they will be automatically compiled to object files. The static library
prefix and suffix (if any) are automatically added to the target. The target li-
brary file prefix (specified by the $SHLIBPREFIX construction variable; by de-
fault, lib on POSIX systems, nothing on Windows systems) and suffix (specified
by the $SHLIBSUFFIX construction variable; by default, .dll on Windows sys-
tems, .so on POSIX systems) are automatically added to the target if not already
present. Example:
env.SharedLibrary(target = ’bar’, source = [’bar.c’, ’foo.o’])

On Windows systems, the SharedLibrary builder method will always build an
import (.lib) library in addition to the shared (.dll) library, adding a .lib
library with the same basename if there is not already a .lib file explicitly listed
in the targets.

Any object files listed in the source must have been built for a shared library
(that is, using the SharedObject builder method). scons will raise an error if
there is any mismatch.

On Windows systems, specifying register=1 will cause the .dll to be regis-
tered after it is built using REGSVR32. The command that is run ("regsvr32" by
default) is determined by $REGSVR construction variable, and the flags passed
are determined by $REGSVRFLAGS. By default, $REGSVRFLAGS includes the
/s option, to prevent dialogs from popping up and requiring user attention
when it is run. If you change $REGSVRFLAGS, be sure to include the /s option.
For example,
env.SharedLibrary(target = ’bar’,

source = [’bar.cxx’, ’foo.obj’],
register=1)

will register bar.dll as a COM object when it is done linking it.

SharedObject()
env.SharedObject()

Builds an object file for inclusion in a shared library. Source files must have one of
the same set of extensions specified above for the StaticObject builder method.
On some platforms building a shared object requires additional compiler option
(e.g. -fPIC for gcc) in addition to those needed to build a normal (static) object,
but on some platforms there is no difference between a shared object and a nor-
mal (static) one. When there is a difference, SCons will only allow shared objects
to be linked into a shared library, and will use a different suffix for shared ob-
jects. On platforms where there is no difference, SCons will allow both normal
(static) and shared objects to be linked into a shared library, and will use the
same suffix for shared and normal (static) objects. The target object file prefix
(specified by the $SHOBJPREFIX construction variable; by default, the same as
$OBJPREFIX) and suffix (specified by the $SHOBJSUFFIX construction variable)
are automatically added to the target if not already present. Examples:
env.SharedObject(target = ’ddd’, source = ’ddd.c’)
env.SharedObject(target = ’eee.o’, source = ’eee.cpp’)
env.SharedObject(target = ’fff.obj’, source = ’fff.for’)

165

Appendix B. Builders

Note that the source files will be scanned according to the suffix mappings in the
SourceFileScanner object. See the section "Scanner Objects," below, for a more
information.

StaticLibrary()
env.StaticLibrary()

Builds a static library given one or more object files or C, C++, D or Fortran
source files. If any source files are given, then they will be automatically com-
piled to object files. The static library prefix and suffix (if any) are automatically
added to the target. The target library file prefix (specified by the $LIBPREFIX
construction variable; by default, lib on POSIX systems, nothing on Windows
systems) and suffix (specified by the $LIBSUFFIX construction variable; by de-
fault, .lib on Windows systems, .a on POSIX systems) are automatically added
to the target if not already present. Example:
env.StaticLibrary(target = ’bar’, source = [’bar.c’, ’foo.o’])

Any object files listed in the source must have been built for a static library (that
is, using the StaticObject builder method). scons will raise an error if there is
any mismatch.

StaticObject()
env.StaticObject()

Builds a static object file from one or more C, C++, D, or Fortran source files.
Source files must have one of the following extensions:

.asm assembly language file

.ASM assembly language file

.c C file

.C Windows: C file
POSIX: C++ file

.cc C++ file

.cpp C++ file

.cxx C++ file

.cxx C++ file

.c++ C++ file

.C++ C++ file

.d D file

.f Fortran file

.F Windows: Fortran file
POSIX: Fortran file + C pre-processor

.for Fortran file

.FOR Fortran file

.fpp Fortran file + C pre-processor

.FPP Fortran file + C pre-processor

.m Object C file

.mm Object C++ file

.s assembly language file

.S Windows: assembly language file
POSIX: assembly language file + C pre-processor

.spp assembly language file + C pre-processor

.SPP assembly language file + C pre-processor

The target object file prefix (specified by the $OBJPREFIX construction variable;
nothing by default) and suffix (specified by the $OBJSUFFIX construction vari-
able; .obj on Windows systems, .o on POSIX systems) are automatically added
to the target if not already present. Examples:
env.StaticObject(target = ’aaa’, source = ’aaa.c’)
env.StaticObject(target = ’bbb.o’, source = ’bbb.c++’)
env.StaticObject(target = ’ccc.obj’, source = ’ccc.f’)

166

Appendix B. Builders

Note that the source files will be scanned according to the suffix mappings in
SourceFileScanner object. See the section "Scanner Objects," below, for a more
information.

Tar()
env.Tar()

Builds a tar archive of the specified files and/or directories. Unlike most builder
methods, the Tar builder method may be called multiple times for a given target;
each additional call adds to the list of entries that will be built into the archive.
Any source directories will be scanned for changes to any on-disk files, regard-
less of whether or not scons knows about them from other Builder or function
calls.
env.Tar(’src.tar’, ’src’)

Create the stuff.tar file.
env.Tar(’stuff’, [’subdir1’, ’subdir2’])
Also add "another" to the stuff.tar file.
env.Tar(’stuff’, ’another’)

Set TARFLAGS to create a gzip-filtered archive.
env = Environment(TARFLAGS = ’-c -z’)
env.Tar(’foo.tar.gz’, ’foo’)

Also set the suffix to .tgz.
env = Environment(TARFLAGS = ’-c -z’,

TARSUFFIX = ’.tgz’)
env.Tar(’foo’)

TypeLibrary()
env.TypeLibrary()

Builds a Windows type library (.tlb) file from an input IDL file (.idl). In ad-
dition, it will build the associated inteface stub and proxy source files, naming
them according to the base name of the .idl file. For example,
env.TypeLibrary(source="foo.idl")

Will create foo.tlb , foo.h , foo_i.c , foo_p.c and foo_data.c files.

Uic()
env.Uic()

Builds a header file, an implementation file and a moc file from an ui file. and
returns the corresponding nodes in the above order. This builder is only avail-
able after using the tool ’qt’. Note: you can specify .ui files directly as source
files to the Program , Library and SharedLibrary builders without using this
builder. Using this builder lets you override the standard naming conventions
(be careful: prefixes are always prepended to names of built files; if you don’t
want prefixes, you may set them to “). See the $QTDIR variable for more infor-
mation. Example:
env.Uic(’foo.ui’) # -> [’foo.h’, ’uic_foo.cc’, ’moc_foo.cc’]
env.Uic(target = Split(’include/foo.h gen/uicfoo.cc gen/mocfoo.cc’),

source = ’foo.ui’) # -> [’include/foo.h’, ’gen/uicfoo.cc’, ’gen/mocfoo.cc’]

167

Appendix B. Builders

Zip()
env.Zip()

Builds a zip archive of the specified files and/or directories. Unlike most builder
methods, the Zip builder method may be called multiple times for a given target;
each additional call adds to the list of entries that will be built into the archive.
Any source directories will be scanned for changes to any on-disk files, regard-
less of whether or not scons knows about them from other Builder or function
calls.
env.Zip(’src.zip’, ’src’)

Create the stuff.zip file.
env.Zip(’stuff’, [’subdir1’, ’subdir2’])
Also add "another" to the stuff.tar file.
env.Zip(’stuff’, ’another’)

168

Appendix C. Tools

This appendix contains descriptions of all of the Tools that are available "out of the
box" in this version of SCons.

386asm

XXX

aixc++

XXX

aixcc

XXX

aixf77

XXX

aixlink

XXX

ar

XXX

as

XXX

bcc32

XXX

BitKeeper

XXX

c++

XXX

cc

XXX

cvf

XXX

CVS

XXX

default

XXX

dmd

XXX

dvipdf

XXX

169

Appendix C. Tools

dvips

XXX

f77

XXX

f90

XXX

f95

XXX

fortran

XXX

g++

XXX

g77

XXX

gas

XXX

gcc

XXX

gnulink

XXX

gs

XXX

hpc++

XXX

hpcc

XXX

hplink

XXX

icc

XXX

icl

XXX

ifl

XXX

ifort

XXX

170

Appendix C. Tools

ilink

XXX

ilink32

XXX

intelc

XXX

jar

XXX

javac

XXX

javah

XXX

latex

XXX

lex

XXX

link

XXX

linkloc

XXX

m4

XXX

masm

XXX

midl

XXX

mingw

XXX

mslib

XXX

mslink

XXX

msvc

XXX

msvs

XXX

171

Appendix C. Tools

mwcc

XXX

mwld

XXX

nasm

XXX

pdflatex

XXX

pdftex

XXX

Perforce

XXX

qt

XXX

RCS

XXX

rmic

XXX

rpcgen

XXX

SCCS

XXX

sgiar

XXX

sgic++

XXX

sgicc

XXX

sgilink

XXX

Subversion

XXX

sunar

XXX

sunc++

XXX

172

Appendix C. Tools

suncc

XXX

sunlink

XXX

swig

XXX

tar

XXX

tex

XXX

tlib

XXX

yacc

XXX

zip

XXX

173

Appendix C. Tools

174

Appendix D. Handling Common Tasks

There is a common set of simple tasks that many build configurations rely on as
they become more complex. Most build tools have special purpose constructs for
performing these tasks, but since SConscript files are Python scripts, you can use
more flexible built-in Python services to perform these tasks. This appendix lists a
number of these tasks and how to implement them in Python .

Example D-1. Wildcard globbing to create a list of filenames

import glob
files = glob.glob(wildcard)

Example D-2. Filename extension substitution

import os.path
filename = os.path.splitext(filename)[0]+extension

Example D-3. Appending a path prefix to a list of filenames

import os.path
filenames = [os.path.join(prefix, x) for x in filenames]

or in Python 1.5.2:
import os.path
new_filenames = []
for x in filenames:

new_filenames.append(os.path.join(prefix, x))

Example D-4. Substituting a path prefix with another one

if filename.find(old_prefix) == 0:
filename = filename.replace(old_prefix, new_prefix)

or in Python 1.5.2:
import string
if string.find(filename, old_prefix) == 0:

filename = string.replace(filename, old_prefix, new_prefix)

Example D-5. Filtering a filename list to exclude/retain only a specific set of exten-
sions

import os.path
filenames = [x for x in filenames if os.path.splitext(x)[1] in extensions]

or in Python 1.5.2:
import os.path
new_filenames = []
for x in filenames:

if os.path.splitext(x)[1] in extensions:
new_filenames.append(x)

Example D-6. The "backtick function": run a shell command and capture the output

import os
output = os.popen(command).read()

175

Appendix D. Handling Common Tasks

176

	SCons User Guide 0.96.95
	Table of Contents
	Preface
	SCons Principles
	A Caveat About This Guide's Completeness
	Acknowledgements
	Contact

	Chapter 1. Building and Installing SCons
	Installing Python
	Installing SCons From PreBuilt Packages
	Installing SCons on Red Hat (and Other RPMbased) Linux Systems
	Installing SCons on Debian Linux Systems
	Installing SCons on Windows Systems

	Building and Installing SCons on Any System
	Building and Installing Multiple Versions of SCons SidebySide
	Installing SCons in Other Locations
	Building and Installing SCons Without Administrative Privileges

	Chapter 2. Simple Builds
	Building Simple C / C++ Programs
	Building Object Files
	Simple Java Builds
	Cleaning Up After a Build
	The SConstruct File
	SConstruct Files Are Python Scripts
	SCons Functions Are OrderIndependent

	Making the SCons Output Less Verbose

	Chapter 3. Less Simple Things to Do With Builds
	Specifying the Name of the Target (Output) File
	Compiling Multiple Source Files
	Specifying Single Files Vs. Lists of Files
	Making Lists of Files Easier to Read
	Keyword Arguments
	Compiling Multiple Programs
	Sharing Source Files Between Multiple Programs

	Chapter 4. Building and Linking with Libraries
	Building Libraries
	Building Static Libraries Explicitly: the StaticLibrary Builder
	Building Shared (DLL) Libraries: the SharedLibrary Builder

	Linking with Libraries
	Finding Libraries: the $LIBPATH Construction Variable

	Chapter 5. Node Objects
	Builder Methods Return Lists of Target Nodes
	Explicitly Creating File and Directory Nodes
	Printing Node File Names
	Using a Node's File Name as a String

	Chapter 6. Dependencies
	Deciding When a Source File Has Changed: the SourceSignatures Function
	MD5 Source File Signatures
	Source File Time Stamps

	Deciding When a Target File Has Changed: the TargetSignatures Function
	Build Signatures
	File Contents

	Implicit Dependencies: The $CPPPATH Construction Variable
	Caching Implicit Dependencies
	The implicitdepschanged Option
	The implicitdepsunchanged Option

	Ignoring Dependencies: the Ignore Method
	Explicit Dependencies: the Depends Method

	Chapter 7. Construction Environments
	Multiple Construction Environments
	Copying Construction Environments
	Fetching Values From a Construction Environment
	Expanding Values From a Construction Environment
	Modifying a Construction Environment
	Replacing Values in a Construction Environment
	Appending to the End of Values in a Construction Environment
	Appending to the Beginning of Values in a Construction Environment

	Chapter 8. Controlling the External Environment Used to Execute Build Commands
	Propagating PATH From the External Environment

	Chapter 9. Controlling a Build From the Command Line
	Not Having to Specify CommandLine Options Each Time: the SCONSFLAGS Environment Variable
	Getting at CommandLine Targets
	Controlling the Default Targets
	Getting at the List of Default Targets

	Getting at the List of Build Targets, Regardless of Origin
	CommandLine variable=value Build Options
	Controlling CommandLine Build Options
	Providing Help for CommandLine Build Options
	Reading Build Options From a File
	Canned Build Options
	True/False Values: the BoolOption Build Option
	Single Value From a List: the EnumOption Build Option
	Multiple Values From a List: the ListOption Build Option
	Path Names: the PathOption Build Option
	Enabled/Disabled Path Names: the PackageOption Build Option

	Adding Multiple CommandLine Build Options at Once

	Chapter 10. Providing Build Help: the Help Function
	Chapter 11. Installing Files in Other Directories: the Install Builder
	Installing Multiple Files in a Directory
	Installing a File Under a Different Name
	Installing Multiple Files Under Different Names

	Chapter 12. PlatformIndependent File System Manipulation
	Copying Files or Directories: The Copy Factory
	Deleting Files or Directories: The Delete Factory
	Moving (Renaming) Files or Directories: The Move Factory
	Updating the Modification Time of a File: The Touch Factory
	Creating a Directory: The Mkdir Factory
	Changing File or Directory Permissions: The Chmod Factory
	Executing an action immediately: the Execute Function

	Chapter 13. Preventing Removal of Targets
	Preventing target removal during build: the Precious Function
	Preventing target removal during clean: the NoClean Function

	Chapter 14. Hierarchical Builds
	SConscript Files
	Path Names Are Relative to the SConscript Directory
	TopLevel Path Names in Subsidiary SConscript Files
	Absolute Path Names
	Sharing Environments (and Other Variables) Between SConscript Files
	Exporting Variables
	Importing Variables
	Returning Values From an SConscript File

	Chapter 15. Separating Source and Build Directories
	Specifying a Build Directory as Part of an SConscript Call
	Why SCons Duplicates Source Files in a Build Directory
	Telling SCons to Not Duplicate Source Files in the Build Directory
	The BuildDir Function
	Using BuildDir With an SConscript File

	Chapter 16. Variant Builds
	Chapter 17. Writing Your Own Builders
	Writing Builders That Execute External Commands
	Attaching a Builder to a Construction Environment
	Letting SCons Handle The File Suffixes
	Builders That Execute Python Functions
	Builders That Create Actions Using a Generator
	Builders That Modify the Target or Source Lists Using an Emitter

	Chapter 18. Not Writing a Builder: the Command Builder
	Chapter 19. Writing Scanners
	A Simple Scanner Example

	Chapter 20. Building From Code Repositories
	The Repository Method
	Finding source files in repositories
	Finding #include files in repositories
	Limitations on #include files in repositories

	Finding the SConstruct file in repositories
	Finding derived files in repositories
	Guaranteeing local copies of files

	Chapter 21. MultiPlatform Configuration (Autoconf Functionality)
	Configure Contexts
	Checking for the Existence of Header Files
	Checking for the Availability of a Function
	Checking for the Availability of a Library
	Checking for the Availability of a typedef
	Adding Your Own Custom Checks
	Not Configuring When Cleaning Targets

	Chapter 22. Caching Built Files
	Specifying the Shared Cache Directory
	Keeping Build Output Consistent
	Not Retrieving Files From a Shared Cache
	Populating a Shared Cache With AlreadyBuilt Files

	Chapter 23. Alias Targets
	Chapter 24. Java Builds
	Building Java Class Files: the Java Builder
	How SCons Handles Java Dependencies
	Building Java Archive (.jar) Files: the Jar Builder
	Building C Header and Stub Files: the JavaH Builder
	Building RMI Stub and Skeleton Class Files: the RMIC Builder

	Chapter 25. Troubleshooting
	Why is That Target Being Rebuilt? the debug=explain Option
	What's in That Construction Environment? the Dump Method

	Appendix A. Construction Variables
	Appendix B. Builders
	Appendix C. Tools
	Appendix D. Handling Common Tasks

