1y
mmmm SCONS

Build your software, better.

SCons4.5.0

Design

Steven Knight

version 4.5.0
Copyright © 2001 Steven Knight
Publication date 2001

Copyright (c) 2001 Steven Knight Portions of this document, by the same author, were previously published Copyright 2000
by CodeSourcery LLC, under the Software Carpentry Open Publication License, the terms of which are available at http://
www.software-carpentry.com/openpub-license.html [http://www.software-carpentry.com/openpub-license.html].

http://www.software-carpentry.com/openpub-license.html
http://www.software-carpentry.com/openpub-license.html
http://www.software-carpentry.com/openpub-license.html

Table of Contents

O [L oo (8 1o o R TSP PPPPTPUPPPPPRUPPPIN 1
1.1, ADOUL THiS DOCUMENE ...ttt et e et et e et et e e e et e e e e et eeeera s 1
A €0 = | ST PP PP TPPPPTR 2
2.1 FiXiNg MaKE'S ProDIEMSeuiiiiiii ettt ettt 3
2.2. FIXING CONS'S ProDIEMS ..o et 3
R Y < oY= PP PP TPPPPTR 4
3L ATCRITECIUIE ...ttt ettt ettt et e ettt et et e e e e enaas 4
3.2 BUI ENQINGE .ottt ettt ettt e et e e et e et e e e e enaas 5
2.1 PYLNON APL oo 5
3.2.2. SINGIE-IMAGE EXECULION ...eeeitieeeeit ettt e ettt e ettt e et e e e e e e e e aba s 5
3.2.3. DEPENTENCY @NAIYSISiiiiitieeeiit ettt ettt ettt et et e e e e e e e 5
3.2.4, CUSIOMIZEA OULPUL eeeett ettt ettt ettt ettt et et ettt e et e e e e e e rae e e eneas 6
325, BUIIA FAIIUIES ...t 6

R A [1= £ = o= ST P TP SUPPTTR 6
3.3.1. Native Python INTEITAceiiiiiii e 6
3.3.2. MEKEFIE INTEITACE ..ot e e 6
3.3.3. Graphical INTEITACES ... i et e e e 7

4. BUIIA ENGINE APl e et et ettt 8
A1, GENEral PrINCIPIES .ottt e et et 8
411, KEYWOId @rQUIMIENESneieetieeeeti e ettt e et e e et et e e et et e e et et e e et et e e et et e e et e b eeeenan s 8
4.1.2. Internal ObjeCt FEPrESENLAIIONiiiiiti e ettt e et e et e e et e e e et e eeerb e e e eea e eeees 8

4.2. CONSLIrUCLiON ENVITONIMENESiiiiit ittt et e et e e et e e et e e e e et eeeebeaeeeees 8
4.2.1. CONSLrUCHION VAADIES ... e 9
4.2.2. Fetching construction VariableSooiiiiiiiiiii e 9
4.2.3. Copying a CoNStruCtion €NVIFONMENTuuiiiiieieteii ettt e e e e 9
4.2.4. Multiple construction ENVIFONMENESuiiiiiieiiiii et e et e e e e e 10
4.2.5. Variable SUDSHTULIONoouuniiiiiii e 10

R = U e (=Y G @ o = ol £ S PP PUP PP UOPPPT PR TPPPPN 11
4.3.1. Specifying MUItIPIE INPUEScoieiieiiii e 12
4.3.2. SPeCifying MUItIPIE tArGELScevveieiiii et e e 12
4.3.3. File prefixes and SUFTIXEScooiui et 13
4.3.4. BUi | der ObJECE EXCEPLIONScoeviieiiii et 13
4.3.5. User-defined Bui | der ODJECISccoiuiiiiiiiiiieiiii e e 13
4.3.6. Copying Bui | der ODJECIScouuuuiiiiiiiiei et 14
4.3.7. Special-purpose BUITA FUIESu e e e 15
4.3.8. The MBKE BUI | G .oueii et 15
A.3.9. BUI | OEBI MADS ittt e e et e et e et et e et e e e aee 15

A4, DEPENUENCIESeieitieeeitt ettt ettt ettt ettt et e et e ettt b e e ettt e e et e e et e e et e e e e e e enaas 16
4.4.1. AULOMAELIC dEPENAENCIES ...oeiei ittt e e e e e 16
4.4.2. IMPlICIt dEPENAENCIEStiiiiiit ettt ettt e e et e e e e e e ennes 16
4.4.3. 1gNOring dEPENUENCIEScouuuiiiiiii ettt e ettt e et e e e 17
4.4.4. EXPlICIt ABPENAENCIESoviiiiiiii ettt et ettt e et e e e e e e enees 17

A5, SCANNET ODJECIS ..iiitiiiiiii ettt ettt et e e et e e ettt e e et et e et et b e et eetreeeenbnreeeenbnaeeeee 17
4.5.1. User-defined SCanNer ODJECISccouuuiiiiiiiiiiiiii ettt e e e e 18
4.5.2. Copying SCANNET ODJECISciieiiieiiiiiie et e ettt et e e e e e 18
4.5.3. SCANNET MAPRS .tuiiitieiei ettt et ettt ettt et et et et e e et e et a e e eaa e e tat e e et e ennaaees 19

N N I 0= T PP PT PP 19
4.6.1. BUIAING TAIGELSiieiiiie ittt et e e e e e e e e e e 19
4.6.2. REMOVING TAIJELSuiiiiti ettt ettt ettt ettt e et et e et e e e et et e e e enan e eeenans 19
4.6.3. Suppressing cleanup removal of DUIlA-TargetScoovveiiiiiiiiii e 20
4.6.4. Suppressing build-target removalooiiiiiii 20

~

'—‘—' SCONS iii

RSN D= - 1 L A = (= £ P 20

X e L= 10t = = 1 o o PSPPI 21

I A = 11 1= = =S = 21

Ny Ot (o 0 o o 11 1 0| 21

4.8. Separate source and bUIlA trEESiiiii i 22

e YT o0] o PSRN 23
(OO0 o LT (= 001] (o = P 23

411, Derived-file CAChINGciiiiiii e 24

N o o T 40T = o 1= 0= | PPN 24

5. N@tive Python INTEITaCEouiiii e e e e e e e e e eeaas 25
5.1, Configuration fIlESuuiiiiii e e 25

I Y aTo g TR 01 = G PP 25

5.3. Subsidiary configuration FIIESccouiiiiiiiiii e e e 26

5.4. Variable scoping in sUbSIdiary fil€Siiiuniiiiiiiii e 26

5.5, HierarchiCal DUITASiiiiiii e et e e e e e e et e e e et e e eatn e eeees 27

5.6. Sharing CONSIrUCioN ENVIFONMENTSi.uuiiiiiiei e it e et e e e e e e e e e e e e et e e e et e e et e e et eeaneeanaeeen 27

LT R = 1= T o TSP 27

oIS T o 0o PSP 28

O 1= g =S L= PP 29
6.1. Interaction With SC-CONFIguiiieiiiiiii e e e e e e e e e eanes 29

6.2. Interaction wWith test INfrastrUCIUIESuuiiiiiii e 29

LSRG - V7= W = 0 o L= ot == 29

6.4. Limitations of digital signature CalCUlAtionccocuuioiiiiiiiii e e e e eaans 30

B.5. REMOLE EXECULION ..uttiiiiiii e e ettt e ettt et e et e e e et e e e e et s e e e et n e e e ettt e e e et s e e eabaaeeeannns 30

6.6. CONAItIONEl DUITAS ...coeveiiiii e e e e e et e e e e 30

28 = - o (o | {1 o P 31
e TS 10 010072 Y TP 32
LS Ao oY = o o 1= 0T) P 33

Iy
=== SCONS iv

List of Figures

G I S @0 o 3 Y o o 11 (=Tox 1< TP

Iy
=== SCONS

Introduction

The SCons tool provides an easy-to-use, feature-rich interface for constructing software. Architecturally, SCons
separates its dependency analysis and external object management into an interface-independent Build Engine that
could be embedded in any software system that can run Python.

At the command line, SCons presents an easily-grasped tool where configuration files are Python scripts, reducing the
need to learn new build-tool syntax. Inexperienced users can use intelligent methods that *“do the right thing" to build
software with a minimum of fuss. Sophisticated users can use arich set of underlying features for finer control of the
build process, including mechanisms for easily extending the build process to new file types.

Dependencies are tracked using digital signatures, which provide more robust dependency analysis than file time
stamps. Implicit dependencies are determined automatically by scanning the contents of sourcefiles, avoiding the need
for laborious and fragile maintenance of static lists of dependenciesin configuration files.

The SCons tool supports use of files from one or more central code repositories, a mechanism for caching derived
files, and parallel builds. The tool aso includes a framework for sharing build environments, which allows system
administrators or integrators to define appropriate build parameters for use by other users.

1.1. About This Document

This document is an ongoing work-in-progress to write down the ideas and tradeoffs that have gone, and will go into,
the SCons design. As such, thisis intended primarily for use by developers and others working on SCons, although
it isalso intended to serve as a detailed overview of SCons for other interested parties. It will be continually updated
and evolve, and will likely overlap with other documentation produced by the project. Sections of this document that
deal with syntax, for example, may move or be copied into a user guide or reference manual.

So please don't assume that everything mentioned here has been decided and carved in stone. If you have ideas for
improvements, or questions about thingsthat don't seem to make any sense, please help improve the design by speaking
up about them.

2 Goals

As a next-generation build tool, SCons should fundamentally improve on its predecessors. Rather than simply being
driven by trying to not be like previous tools, SCons aims to satisfy the following goals:

Practicality
The SCons design emphasi zes an implementabl e feature set that lets users get practical, useful work done. SCons
is helped in this regard by its roots in Cons, which has had its feature set honed by several years of input from
adedicated band of users.

Portability
SCons is intended as a portable build tool, able to handle software construction tasks on a variety of operating
systems. It should be possible (although not mandatory) to use SCons so that the same configuration file buildsthe
same software correctly on, for example, both Linux and Windows NT. Consequently, SCons should hide from
users operating-system-dependent details such as filename extensions (for example, . 0 vs.. obj).

Usability
Novice users should be able to grasp quickly the rudiments of using SConsto build their software. This extends
to installing SCons, too. Installation should be painless, and the installed SCons should work "out of the box"
to build most software.

This goal should be kept in mind during implementation, when there is always a tendency to try to optimize too
early. Speed is nice, but not as important as clarity and ease of use.

Uility
SCons should also provide a rich enough set of features to accommodate building more complicated software
projects. However, the features required for building complicated software projects should not get in the way of
novice users. (See the previous goal.) In other words, complexity should be available when it's needed but not
required to get work done. Practically, thisimplies that SCons shouldn't be dumbed down to the point it excludes
complicated software builds.

Sharability
As a key element in balancing the conflicting needs of Usabi | ity and Utility, SCons should provide
mechanisms to allow SCons users to share build rules, dependency scanners, and other objects and recipes for
constructing software. A good sharing mechanism should support the model wherein most devel opers on a project
use rules and templates that are created and maintained by alocal integrator or build-master,

Extensibility
SCons should provide mechanisms for easily extending its capabilities, including building new types of files,
adding new types of dependency scanning, being able to accomodate dependencies between objects other than
files, etc.

Fixing Make's problems

Flexibility
In addition to providing auseful command-line interface, SCons should provide the right architectural framework
for embedding its dependency management in other interfaces. SCons would help strengthen other GUIs or IDES
and the additional requirements of the other interfaceswould hel p broaden and solidify the core SCons dependency

management.

2.1. Fixing Make's problems

2.2. Fixing Cons's problems

Iy
=== SCONS 3

3 Overview

3.1. Architecture

The heart of SCons is its Build Engine. The SCons Build Engine is a Python module that manages dependencies
between external objects such as files or database records. The Build Engine is designed to be interface-neutral and
easily embeddable in any software system that needs dependency analysis between updatable objects.

The key parts of the Build Engine architecture are captured in the following quasi-UML diagram:

Figure 3.1. SCons Architecture

Environment T Intercessor

‘ Node

Builder =
0.1

build()

scan()

Scanner

e Intercessor.FS Intercessor.DB
v
Node.FS Node.DB - !
Dir File Table Record Field
P P

The point of SCons is to manage dependencies between arbitrary external objects. Consequently, the Build Engine
does not restrict or specify the nature of the external objects it manages, but instead relies on subclass of the Node
class to interact with the external system or systems (file systems, database management systems) that maintain the
objects being examined or updated.

Build Engine

The Build Engine presents to the software system in which it is embedded a Python API for specifying source (input)
and target (output) objects, rulesfor building/updating objects, rules for scanning objects for dependencies, etc. Above
its Python API, the Build Engine is completely interface-independent, and can be encapsulated by any other software
that supports embedded Python.

Software that chooses to use the Build Engine for dependency management interacts with it through Construction
Environments. A Construction Environment consists of a dictionary of environment variables, and one or more
associated Scanner objectsand Bui | der objects. The Python API is used to form these associations.

A Scanner object specifies how to examine atype of source object (C source file, database record) for dependency
information. A Scanner object may use variables from the associated Construction Environment to modify how it
scans an object: specifying a search path for included files, which field in a database record to consuilt, etc.

A Bui | der object specifies how to update a type of target object: executable program, object file, database field,
etc. LikeaScanner object, aBui | der object may use variables from the associated Construction Environment to
modify how it builds an object: specifying flags to a compiler, using a different update function, etc.

Scanner and Bui | der objectswill return one or more Node objects that represent external objects. Node objects
are the means by which the Build Engine tracks dependencies. A Node may represent a source (input) object that
should already exist, or atarget (output) object which may be built, or both. The Node classis sub-classed to represent
external objects of specific type: files, directories, database fields or records, etc. Because dependency information,
however, istracked by the top-level Node methods and attributes, dependencies can exist between nodes representing
different external object types. For example, building afile could be made dependent on the value of agiven fieldin
a database record, or a database table could depend on the contents of an externa file.

The Build Engine uses a Job class (not displayed) to manage the actual work of updating external target objects:
spawning commands to build files, submitting the necessary commands to update a database record, etc. The Job
class has sub-classes to handle differences between spawning jobsin parallel and serially.

The Build Engine also uses a Si gnhat ur e class (not displayed) to maintain information about whether an external
object is up-to-date. Target objects with out-of-date signatures are updated using the appropriate Bui | der object.

3.2. Build Engine

More detailed discussion of some of the Build Engine's characteristics:

3.2.1. Python API

The Build Engine can be embedded in any other software that supports embedding Python: inaGUI, in awrapper script
that interpretsclassic Makef i | e syntax, or in any other software that can transl ate its dependency representation into
the appropriate callsto the Build Engine API. describesin detail the specification for a"Native Python" interface that
will drive the SCons implementation effort.

3.2.2. Single-image execution
When building/updating the objects, the Build Engine operates as a single executable with acompl ete Directed Acyclic

Graph (DAG) of the dependenciesin the entire build tree. Thisisin stark contrast to the commonplace recursive use
of Make to handle hierarchical directory-tree builds.

3.2.3. Dependency analysis

Dependency analysisis carried out via digital signatures (a.k.a. "fingerprints'). Contents of object are examined and
reduced to a number that can be stored and compared to see if the object has changed. Additionally, SCons uses the

Iy
=== SCONS 5

Customized output

same signature technique on the command-linesthat are executed to update an object. If the command-line has changed
since the last time, then the object must be rebuilt.

3.2.4. Customized output

The output of Build Engine is customizable through user-defined functions. This could be used to print additional
desired information about what SConsis doing, or tailor output to a specific build analyzer, GUI, or IDE.

3.2.5. Build failures

SCons detects build failures via the exit status from the tools used to build the target files. By default, a failed exit
status (non-zero on UNIX systems) terminates the build with an appropriate error message. An appropriate class from
the Python library will interpret build-tool failures via an OS-independent API.

If multiple tasks are executing in aparallel build, and one tool returnsfailure, SConswill not initiate any further build
tasks, but allow the other build tasks to complete before terminating.

A - k command-line option may be used to ignore errors and continue building other targets. In no case will atarget
that depends on afailed build be rebuilt.

3.3. Interfaces

Aspreviously described, the SCons Build Engineisinterface-independent aboveits Python API, and can be embedded
in any software system that can trand ate its dependency requirements into the necessary Python calls.

The "main" SCons interface for implementation purposes, uses Python scripts as configuration files. Because this
exposes the Build Engine's Python API to the user, it is current called the "Native Python™" interface.

This section will also discuss how SConswill function in the context of two other interfaces: the Makef i | e interface
of the classic Make utility, and a hypothetical graphical user interface (GUI).

3.3.1. Native Python interface

The Native Python interface is intended to be the primary interface by which users will know SCons--that is, it is the
interface they will useif they actually type SCons at a command-line prompt.

In the Native Python interface, SCons configuration files are smply Python scripts that directly invoke methods from
the Build Engine's Python API to specify target files to be built, rules for building the target files, and dependencies.
Additional methods, specific to this interface, are added to handle functionality that is specific to the Native Python
interface: reading a subsidiary configuration file; copying target files to an installation directory; etc.

Because configuration files are Python scripts, Python flow control can be used to provide very flexible manipulation
of objects and dependencies. For example, afunction could be used to invoke a common set of methods on afile, and
called iteratively over an array of files.

As an additional advantage, syntax errors in SCons Native Python configuration files will be caught by the Python
parser. Target-building does not begin until after all configuration files are read, so a syntax error will not cause a
build to fail half-way.

3.3.2. Makefile interface

An aternate SConsinterface would provide backwards compatibility with the classic Make utility. Thiswould be done
by embedding the SCons Build Engine in a Python script that can trandate existing Makef i | esinto the underlying

Iy
=== SCONS 6

Graphical interfaces

calls to the Build Engine's Python API for building and tracking dependencies. Here are approaches to solving some
of the issues that arise from marrying these two pieces:

» Makefil e suffix rules can be translated into an appropriate Bui | der object with suffix maps from the
Construction Environment.

» Long lists of static dependences appended to aMakef i | e by various " make depend” schemes can be preserved
but supplemented by the more accurate dependency information provided by Scanner objects.

» Recursive invocations of Make can be avoided by reading up the subsidiary Makef i | e instead.

Lest this seem like too outlandish an undertaking, there is a working example of this approach: Gary Holt's Make++
utility isaPerl script that provides admirably complete parsing of complicated Makef i | esaround an internal build
engine inspired, in part, by the classic Cons utility.

3.3.3. Graphical interfaces

The SCons Build Engine is designed from the ground up to be embedded into multiple interfaces. Consequently,
embedding the dependency capabilities of SCons into graphical interface would be a matter of mapping the GUI's
dependency representation (either implicit or explicit) into corresponding calls to the Python API of the SCons Build
Engine.

Note, however, that this proposal leaves the problem of designed a good graphical interface for representing software
build dependencies to people with actual GUI design experience...

Iy
=== SCONS 7

4 Build Engine API

4.1. General Principles

4.1.1. Keyword arguments

All methods and functionsin this APl will support the use of keyword argumentsin calls, for the sake of explicitness
and readability. For brevity in the hands of experts, most methods and functionswill also support positional arguments
for their most-commonly-used arguments. As an explicit example, the following two lines will each arrange for an
executable program named f oo (or f 00. exe on aWin32 system) to be compiled from thef 0o. ¢ sourcefile:

env. Program(target = 'foo', source = 'foo.c')

env. Program(' foo', 'foo.c')

4.1.2. Internal object representation

All methods and functions use internal (Python) objects that represent the external objects (files, for example) for
which they perform dependency analysis.

All methods and functions in this API that accept an external object as an argument will accept either a string
description or an object reference. For example, the two following two-line examples are equival ent:

env. Qbj ect (target = 'foo.0', source = 'foo.c')

env. Progranm(target = 'foo', 'fo0o0.0") # builds foo fromfoo.o
foo_obj = env.ject(target = 'foo.0', source = 'foo.c')

env. Progranm(target = 'foo', foo_obj) # builds foo fromfoo.o

4.2. Construction Environments

A construction environment is the basic means by which a software system interacts with the SCons Python API to
control abuild process.

Construction variables

A construction environment isan object with associated methodsfor generating target files of varioustypes(Bui | der
objects), other associated object methods for automatically determining dependencies from the contents of various
types of sourcefiles (Scanner objects), and adictionary of values used by these methods.

Passing no argumentsto the Envi r onnent instantiation creates a construction environment with default values for
the current platform:

env = Environnent ()

4.2.1. Construction variables

A construction environment has an associated dictionary of construction variables that control how the build is
performed. By default, the Envi r onnment method creates a construction environment with values that make most
software build "out of the box" on the host system. These default valueswill be generated at thetime SConsisinstalled
using functionality similar to that provided by GNU Autoconf. L At aminimum, there will be pre-configured sets of
default values that will provide reasonable defaults for UNIX and Windows NT.

The default construction environment values may be overridden when a new construction environment is created by
specifying keyword arguments:

env = Environment (CC = 'gec',
CCFLAGS = '-g',
CPPPATH = [".", "src', '"/lusr/include'],
LI BPATH = ["/usr/lib", "."])

4.2.2. Fetching construction variables

A copy of the dictionary of construction variables can be returned using the Di ct i onar y method:

env = Environment ()
dict = env.Dictionary()

If any arguments are supplied, then just the corresponding value(s) are returned:

ccflags = env.Dictionary(' CCFLAGS')
cc, |d = env.Dictionary('CC, 'LD)

4.2.3. Copying a construction environment

A method exists to return a copy of an existing environment, with any overridden values specified as keyword
arguments to the method:

env = Environment ()

L1t would be nice if we could avoid re-inventing the wheel here by using some other Python-based tool Autoconf replacement--like what was
supposed to come out of the Software Carpentry configuration tool contest. It will probably be most efficient to roll our own logic initially and
convert if something better does come along.

Iy
=== SCONS 9

Multiple construction environments

debug = env. Copy(CCFLAGS = '-g')

4.2.4. Multiple construction environments

Different external objects often require different build characteristics. Multiple construction environments may be
defined, each with different values:

env = Environment (CCFLAGS = '")

debug = Envi ronnent (CCFLAGS = '-g')

env. Make(target = '"hello', source = 'hello.c')

debug. Make(target = 'hell o-debug', source = 'hello.c')

Dictionaries of values from multiple construction environments may be passed to the Envi r onnment instantiation or
the Copy method, in which case the last-specified dictionary value wins;

envl Envi ronnent (CCFLAGS = '-O, LDFLAGS = '-d')
env2 Envi ronnent (CCFLAGS = '-g')
new = Environnent (envl. Dictionary(), env2.Dictionary())

The newenvironment in the above exampleretainsLDFLAGS = ' - d' fromtheenv1 environment, and CCFLAGS
= '-g"' fromtheenv2 environment.

4.2.5. Variable substitution

Within a construction command, any variable from the construction environment may be interpolated by prefixing the
name of the construction with $:

MyBui | der = Bui |l der (command = "$XX $XXFLAGS -c¢ $_INPUTS -0 $target")

"bar.out', sources = 'bar.in',
"sed '1d'" < $source > $target")

env. Command(t ar get s
comand

Variable subgtitution is recursive: the command line is expanded until no more substitutions can be made.

Variable names following the $ may be enclosed in braces. This can be used to concatenate an interpolated value with
an alphanumeric character:

Ver boseBui | der = Bui | der (command = "$XX - ${ XXFLAGS}v > $target")

Thevariablewithin bracesmay contain apair of parenthesesafter a Python function nameto be evaluated (for example,
${ map() }). SConswill interpolate the return value from the function (presumably a string):

env = Environment (FUNC = nyfunc)
env. Command(target = 'foo.out', source = 'foo.in",
command = "${FUNC($<)}")

Iy
=== SCONS 10

Bui | der Objects

If areferenced variable is not defined in the construction environment, the null string is interpolated.
The following special variables can also be used:

$targets
All target file names. If multiple targets are specified in an array, $t ar get s expandsto the entire list of targets,
separated by a single space.

Individual targets from a list may be extracted by enclosing the t ar get s keyword in braces and using the
appropriate Python array index or dice:

${targets[0]} # expands to the first target
${targets[1:]} # expands to all but the first target

${targets[1l:-1]} # expands to all but the first and | ast targets

$t ar get
A synonym for ${ t ar get s[0] }, thefirst target specified.

$sour ces
All input file names. Any input file names that are used anywhere else on the current command line (via
${sources[0]},${sources{[1]}, etc.) are removed from the expanded list.

Any of the above special variables may be enclosed in braces and followed immediately by one of the following
attributes to select just a portion of the expanded path name:

. base
Basename: the directory plus the file name, minus any file suffix.

.dir
The directory in which the filelives. Thisis arelative path, where appropriate.

file
The file name, minus any directory portion.

.suffix
The file name suffix (that is, the right-most dot in the file name, and all charactersto the right of that).

.fil ebase
The file name (no directory portion), minus any file suffix.

. abspat h
The absolute path to thefile.

.rel path
The path to the file relative to the root SConstruct file's directory.

4.3. Bui | der Objects

By default, SCons supplies (and uses) a number of pre-defined Bui | der objects:

bj ect compile or assemble an object file
Li brary archivefilesinto alibrary
&

'—‘—' SCONS 11

Specifying multiple inputs

Shar edLi brary archivefilesinto a shared library
Program link objects and/or libraries into an executable
Make build according to file suffixes; see below

A construction environment can be explicitly initialized with associated Bui | der objects that will be bound to the
construction environment object:

env = Environnment (BUI LDERS = [' Object', 'Program])

Bui | der objectsbound to aconstruction environment can be called directly as methods. When invoked, aBui | der
object returns a (list of) objects that it will build:

obj = env. Cbject(target ='hello.o', source = "hello.c")
lib = env. Library(target ='libfoo.a',
source = ['aaa.c', 'bbb.c'])
slib = env. SharedLi brary(target ='libbar.so',
source = ['xxx.c', 'yyy.c'])
prog = env. Program(target ='hello',
source = ['hello.o', '"libfoo.a', 'libbar.so'])

4.3.1. Specifying multiple inputs

Multiple input filesthat go into creating atarget file may be passed in as a single string, with the individual file names
separated by white space:

env. Li brary(target = 'foo.a', source = 'aaa.c bbb.c ccc.c')
env. Qbj ect (target = 'yyy.o', source = 'yyy.c')
env. Program(target = '"bar', source = 'xxx.c yyy.o foo.a')

Alternatively, multiple input files that go into creating a target file may be passed in as an array. This allows input
files to be specified using their object representation:

env. Li brary(target = 'foo.a', source = ['aaa.c', 'bbb.c', 'ccc.c'])
yyy_obj = env.bject(target = 'yyy.o', source = 'yyy.c')
env. Program(target = '"bar', source = ['xxx.c', yyy obj, 'foo.a'])

Individual string elementswithin an array of input files are not further split into white-space separated file names. This
allows file names that contain white space to be specified by putting the value into an array:

env. Program(target = 'foo', source = ['an input file.c'])

4.3.2. Specifying multiple targets

Conversely, the generated target may be a string listing multiple files separated by white space:

Iy
=== SCONS 12

File prefixes and suffixes

env. Qbj ect (target = 'grammar.o y.tab.h', source = 'granmar.y')

An array of multiple target files can be used to mix string and object representations, or to accomodate file names
that contain white space:

env. Program(target = ['ny programi], source = 'input.c')

4.3.3. File prefixes and suffixes

For portability, if the target file name does not already have an appropriate file prefix or suffix, the Bui | der objects
will append one appropriate for the file type on the current system:

builds "hello.o' on UNI X, 'hello.obj' on Wndows NT:
obj = env.nject(target =" hello', source = 'hello.c")

builds 'libfoo.a" on UNIX, 'foo.lib" on Wndows NT:
lib = env.Library(target ='foo', source = ['aaa.c', 'bbb.c'])

builds 'libbar.so’" on UNIX, '"bar.dll' on Wndows NT:
slib = env. SharedLi brary(target ='bar', source = ['xxx.c', "yyy.c'])

builds 'hello" on UNI X, 'hell o.exe' on Wndows NT:

prog = env. Program(target ='hello',
source ["hello.o', '"libfoo.a', 'libbar.so'])

4.3.4. Bui | der object exceptions

Bui | der objects raise the following exceptions on error:

4.3.5. User-defined Bui | der objects

Users can define additional Bui | der objects for specific externa object types unknown to SCons. A Bui | der
object may build its target by executing an external command:

WebPage = Buil der (command = ' ht ml gen $HTM_.GENFLAGS $sources > $target',
suffix = '.htm",
src_suffix ="'.in")

Alternatively, aBui | der object may also build its target by executing a Python function:

def updat e(dest):
[code to update the object]
return 1

O herBui | der1 = Bui |l der(function = update,

Iy
=== SCONS 13

Copying Bui | der Objects

src_suffix =['.in", '".input'])

An optional argument to pass to the function may be specified:

def update_arg(dest, arg):
[code to update the object]
return 1

QO her Bui | der2 = Bui l der (functi on = update_arg,

function_arg = 'xyzzy',
src_suffix =['.in", '".input'])

Both an external command and an internal function may be specified, in which case the function will be called to build
the object first, followed by the command line.

User-defined Bui | der objectscan be used likethe default Bui | der objectsto initialize construction environments.

WebPage = Buil der (conmand = ' ht ml gen $HTMLGENFLAGS $sources > $target',

suffix ="'.htm",

src_suffix ="'.in")
env = Environnent (BU LDERS = [' WebPage'])
env. WbPage(target = 'foo.htm', source = 'foo.in")
Builds "bar.html' on UNI X, 'bar.htm on W ndows NT:
env. WbPage(target = '"bar', source = 'bar.in")

The command-line specification can interpolate variables from the construction environment; see "Variable
substitution,” above.

A Bui | der object may optionally beinitialized with alist of:

« the prefix of the target file (e.g., 'lib' for libraries)

« the suffix of the target file (e.g., ".a@ for libraries)

* the expected suffixes of theinput files (e.g., .0’ for object files)

These arguments are used in automatic dependency analysis and to generate output file names that don't have suffixes
supplied explicitly.

4.3.6. Copying Bui | der Objects

A Copy method exists to return a copy of an existing Bui | der object, with any overridden values specified as
keyword arguments to the method:

buil d = Buil der(function = my_buil d)
buil d_out = build. Copy(suffix =".out")

Typically, Bui | der objects will be supplied by a tool-master or administrator through a shared construction
environment.

Iy
=== SCONS 14

Special-purpose build rules

4.3.7. Special-purpose build rules

A pre-defined Command builder exists to associate a target file with a specific command or list of commands for
building thefile:

env. Coomand(target = 'foo.out', source =
conmand = 'foo.in', "foo.process $sources > $target")
commands = [“bar.process -o .tnpfile $sources",
"mv .tnpfile $target”]
env. Coomand(target = 'bar.out', source = 'bar.in', comand = conmands)

Thisisuseful when it's too cumbersome to create aBui | der object just to build asinglefile in a special way.

4.3.8. The Make Bui | der

A pre-defined Bui | der object named Make existsto make simple builds as easy as possible for users, at the expense
of sacrificing some build portability.

The following minimal example builds the 'hello' program from the 'hello.c’ source file:
Envi ronnent (). Make(' hell o', "hello.c")

Users of the Make Bui | der object are not required to understand intermediate steps involved in generating afile--
for example, the distinction between compiling source code into an object file, and then linking object files into an
executable. The details of intermediate steps are handled by the invoked method. Users that need to, however, can
specify intermediate steps explicitly:

env = Environment ()
env. Make(t ar get "hello.o', source = "hello.c')
env. Make(t ar get "hell o', source = 'hello.o")

The Make method understands the file suffixes specified and "does the right thing" to generate the target object and
program files, respectively. It does this by examining the specified output suffixes for the Bui | der objects bound
to the environment.

Because file name suffixes in the target and source file names must be specified, the Make method can't be used
portably across operating systems. In other words, for the example above, the Make builder will not generate
hel | 0. exe on Windows NT.

4.3.9. Bui | der maps

The env. Make method "does the right thing" to build different file types because it uses a dictionary from the
construction environment that maps file suffixes to the appropriate Bui | der object. This BUl LDERVAP can be
initialized at instantiation:

env = Environment (BUl LDERVAP = {

Iy
=== SCONS 15

Dependencies

.0 : (bject,

‘.a : Library,

".html' : WebPage,
Pr ogr am

1)

With the BUI LDERMAP properly initialized, the env. Make method can be used to build additional file types:
env. Make(target = '"index.htm ', source = 'index.input')

Bui | der objectsreferenced inthe BUI LDERMAP do not need to be listed separately in the BUI LDERS variable. The
construction environment will bind the union of the Bui | der objectslisted in both variables.

4.4. Dependencies

4.4.1. Automatic dependencies

By default, SCons assumesthat atarget file hasaut omat i ¢ dependenci es onthe:

tool used to build the target file
contents of the input files
command line used to build the target file

If any of these changes, the target file will be rebuilt.

4.4.2. Implicit dependencies

Additionally, SCons can scan the contents of filesfori nplicit dependenci es on other files. For example,
SCons will scan the contents of a. ¢ file and determine that any object created from it is dependent on any . h files
specified via#i ncl ude. SCons, therefore, "does the right thing" without needing to have these dependencies listed
explicitly:

% cat Construct

env = Environment ()

env. Progranm(' hell o', '"hello.c")
% cat hello.c

#i nclude "hello_string. h"

mai n()

{
}

% cat > hello_string.h

#define STRING "Hello, world!\n"
% scons .

gcc -c hello.c -0 hello.o

gcc -0 hello hello.c

% ./hello

Hel |l o, worl d!

% cat > hello_string.h

printf("%\n", STRI NG ;

Iy
=== SCONS 16

Ignoring dependencies

#define STRING "Hello, world, hello!\n"
% scons .

gcc -c hello.c -0 hello.o

gcc -0 hello hello.c

% ./ hello

Hell o, world, hello!

%

4.4.3. Ignoring dependencies

Undesirableaut omati ¢ dependenciesorinplicit dependenci es may beignored:

env. Program(target = 'bar', source = 'bar.c')
env. |l gnore(' bar', '/usr/bin/gcc', 'version.h')

In the above example, the bar program will not be rebuilt if the/ usr / bi n/ gcc compiler or thever si on. h file
change.

4.4.4. Explicit dependencies

Dependencies that are unknown to SCons may be specified explicitly in an SCons configuration file:

env. Depends(t ar get
env. Depends(t ar get
env. Depends(t ar get

"outputl', dependency = 'input_1 input_2')
"output2', dependency = ['input_1', "input _2'])
"out put3', dependency = ['white space input'])

env. Depends(target = 'output_a output_ b', dependency = 'input_3')
env. Depends(target = ['output c', 'output_d'], dependency = 'input 4')
env. Depends(target = ['white space output'], dependency = 'input_5')

Just likethet ar get keyword argument, the dependency keyword argument may be specified as a string of white-
space separated file names, or as an array.

A dependency on an SCons configuration file itself may be specified explicitly to force a rebuild whenever the
configuration file changes:

env. Depends(target = "archive.tar.gz', dependency = 'SConstruct')

4.5. Scanner Objects

Analagous to the previously-described Bui | der objects, SCons supplies (and uses) Scanner objects to search the
contents of afile for implicit dependency files:

CScan ‘ scan {c,C,cc,cxx,cpp} filesfor #include dependencies

A construction environment can be explicitly initialized with associated Scanner objects:

Iy
=== SCONS 17

User-defined Scanner objects

env = Environment (SCANNERS = [' CScan', 'MiScan'])
Scanner objects bound to a construction environment can be associated directly with specified files:

env. CScan('foo.c', 'bar.c')
env. MiScan(' i nput.nd')

4.5.1. User-defined Scanner objects

A user may definea Scanner object to scan atype of file for implicit dependencies:

def scanner1(file_contents):
search for dependencies
return dependency_li st

Fi rst Scan = Scanner (functi on = scanner1)

The scanner function must return alist of dependencies that its finds based on analyzing the file contents it is passed
as an argument.

The scanner function, when invoked, will be passed the calling environment. The scanner function can use construction
environments from the passed environment to affect how it performs its dependency scan--the canonical example
being to use some sort of search-path construction variable to look for dependency filesin other directories:

def scanner2(file_contents, env):
path = env. {' SCANNERPATH } # XXX
search for dependenci es using 'path'
return dependency |i st

SecondScan = Scanner (function = scanner 2)

The user may specify an additional argument when the Scanner object is created. When the scanner isinvoked, the
additional argument will be passed to the scanner funciton, which can be used in any way the scanner function seesfit:

def scanner3(file_contents, env, arg):
skip "arg' lines, then search for dependencies
return dependency |i st

Ski p_3_Li nes_Scan
Ski p_6_Li nes_Scan

Scanner (functi on
Scanner (functi on

scanner 2, ar gunment
scanner 2, ar gunment

3)
6)

4.5.2. Copying Scanner Objects

A method exists to return a copy of an existing Scanner object, with any overridden values specified as keyword
arguments to the method:

Iy
=== SCONS 18

Scanner maps

scan = Scanner (function = my_scan)
scan_path = scan. Copy(path = ' “SCANNERPATH)

Typically, Scanner objects will be supplied by a tool-master or administrator through a shared construction
environment.

4.5.3. Scanner maps

Each construction environment has a SCANNERVMAP, a dictionary that associates different file suffixes with a scanner
object that can be used to generate a list of dependencies from the contents of that file. This SCANNERMAP can be
initialized at instantiation:

env = Environment (SCANNERVAP = {
'.c¢' : CScan,
'.cc' . Cscan,
".md' . MiScan,
})

Scanner objectsreferenced in the SCANNERMAP do not need to belisted separately in the SCANNERS variable. The
construction environment will bind the union of the Scanner objectslisted in both variables.

4.6. Targets

The methods in the build engine API described so far merely establish associations that describe file dependencies,
how afile should be scanned, etc. Since the real point isto actually build files, SCons also has methods that actually
direct the build engine to build, or otherwise manipulate, target files.

4.6.1. Building targets

One or more targets may be built as follows:
env.Build(target = ['foo', 'bar'])

Note that specifying a directory (or other collective object) will cause al subsidiary/dependent objects to be built as
well:

env. Bui | d(t ar get

)

env.Build(target = '"builddir"')

By default, SCons explicitly removes atarget file before invoking the underlying function or command(s) to build it.

4.6.2. Removing targets

A "cleanup" operation of removing generated (target) files is performed as follows:

Iy
=== SCONS 19

Suppressing cleanup removal of build-targets

env. Cl ean(target = ['foo', 'bar'])

Like the Bui | d method, the CI ean method may be passed a directory or other collective object, in which case the
subsidiary target objects under the directory will be removed:

env. C ean(t ar get

)

env. Cl ean(target = '"builddir")

(The directories themselves are not removed.)

4.6.3. Suppressing cleanup removal of build-targets

By default, SCons explicitly removes all build-targets when invoked to perform "cleanup". Files that should not be
removed during "cleanup” can be specified viathe NoCl ean method:

env. Li brary(target = 'libfoo.a', source = ['aaa.c', 'bbb.c', 'ccc.c'])
env. NoCl ean(' | i bf co. a')

The NoClean operation has precedence over the Clean operation. A target that is specified as both Clean and NoClean,
will not be removed during a clean. In the following example, target 'foo’ will not be removed during "cleanup”:

env. C ean(t ar get

= 'foo")
env. NoCl ean(' foo')

4.6.4. Suppressing build-target removal

As mentioned, by default, SCons explicitly removes a target file before invoking the underlying function or
command(s) to buildit. Filesthat should not be removed before rebuilding can be specified viathe Pr eci ous method:

env. Library(target = 'libfoo.a', source = ["aaa.c', 'bbb.c', 'ccc.c'])
env. Preci ous('1li bfoo.a'")

4.6.5. Default targets

The user may specify default targets that will be built if there are no targets supplied on the command line;
env. Default('install', 'src')

Multiple calls to the Def aul t method (typically one per SConscr i pt file) append their arguments to the list of
default targets.

Iy
=== SCONS 20

Fileinstallation

4.6.6. File installation

Files may beinstalled in a destination directory:
env.Install ('/usr/bin', 'programl', 'progran®')
Files may be renamed on installation:
env.Install As('/usr/bin/xyzzy', 'xyzzy.in')
Multiple files may be renamed on installation by specifying equal-length lists of target and source files:

env.Install As(['/usr/bin/foo', '/usr/bin/bar'],
['foo.in'", "bar.in'])

4.6.7. Target aliases

In order to provide convenient "shortcut” target names that expand to a specified list of targets, aliases may be
established:

env. Alias(alias = "install",
targets = ['/sbin', "/usr/lib', '/usr/share/ mn'])

In this example, specifying atarget of i nst al | will cause al the files in the associated directories to be built (that
is, installed).
An Al i as may include one or more other Al i ases initslist:

env. Alias(alias
env. Alias(alias

"libraries', targets = ['lib'])
"prograns', targets = ['libraries', 'src'])

4.7. Customizing output

The SConsAPI supportsthe ability to customize, redirect, or suppressits printed output through user-defined functions.
SCons has severa pre-defined pointsin its build process at which it calls afunction to (potentially) print output. User-
defined functions can be specified for these call-back points when Bui | d or Cl eanisinvoked:

env.Build(target = "'.",
on_anal ysi s = dunp_dependency,
pre_update = ny_print_comrand
post _update = my_error_handl er)
on_error = my_error_handl er)

Iy
=== SCONS 21

Separate source and build trees

The specific call-back points are:

on_anal ysi s
Called for every object, immediately after the object has been analyzed to seeif it's out-of-date. Typically used to
print atrace of considered objects for debugging of unexpected dependencies.

pre_updat e
Called for every object that has been determined to be out-of-date before its update function or command is
executed. Typically used to print the command being called to update a target.

post _update
Called for every object after its update function or command has been executed. Typically used to report that a
top-level specified target is up-to-date or was not remade.

on_error
Called for every error returned by an update function or command. Typically used to report errors with some
string that will be identifiable to build-analysis tools.

Functions for each of these call-back points all take the same arguments:
nmy_dunp_dependency(target, |evel, status, update, dependencies)

where the arguments are:

tar get
The target object being considered.

I evel
Specifies how many levels the dependency analysis has recursed in order to consider thet ar get . A value of 0
specifies atop-level t ar get (that is, one passed to the Bui | d or Cl ean method). Objects which a top-level
t ar get isdirectly dependent upon have al evel of <1>, their direct dependencieshaveal evel of <2>, etc.
Typically used to indent output to reflect the recursive levels.

st at us
A string specifying the current status of thetarget (" unknown" ,"bui I t","error","anal yzed", etc.). A
complete list will be enumerated and described during implementation.

updat e
The command line or function name that will be (or has been) executed to update thet ar get .

dependenci es
A list of direct dependencies of the target.

4.8. Separate source and build trees

SCons allows target files to be built completely separately from the source files by "linking" a build directory to an
underlying source directory:

env. Link(' build, "src')

SConscri pt (' bui | d/ SConscri pt')

Iy
=== SCONS 22

Variant builds

SCons will copy (or hard link) necessary files (including the SConscr i pt file) into the build directory hierarchy.
This allows the source directory to remain uncluttered by derived files.

4.9. Variant builds

TheLi nk method may be used in conjunction with multiple construction environments to support variant builds. The
following SConst r uct and SConscri pt files would build separate debug and production versions of the same
program side-by-side:

% cat SConstruct
env = Environnent ()
env. Li nk("' bui |l d/ debug', 'src')

env. Li nk(' bui | d/ production', 'src')

flags = '-¢g'

SConscri pt (' bui | d/ debug/ SConscri pt', Export(env))
flags = '-0

SConscri pt (' bui | d/ producti on/ SConscript', Export(env))
% cat src/ SConscri pt

env = Environment (CCFLAGS = fl ags)

env. Progranm(' hello', '"hello.c")

The following example would build the appropriate program for the current compilation platform, without having to
clean any directories of object or executable files for other architectures:

% cat SConstruct

build_platform= os.path.join('build , sys.platform
Li nk(build_platform 'src')

SConscript (os. path.join(build platform 'SConscript'))
% cat src/ SConscri pt

env = Environnment

env. Program(' hell o', '"hello.c")

4.10. Code repositories

SCons may use files from one or more shared code repositories in order to build local copies of changed target files.
A repository would typically be a central directory tree, maintained by an integrator, with known good libraries and
executables.

Repository('/hone/source/1.1", '/hone/source/1.0")

Specified repositorieswill be searched in-order for any file (configurationfile, input file, target file) that does not exist
in the local directory tree. When building a local target file, SCons will rewrite path names in the build command
to use the necessary repository files. This includes modifying lists of - | or - L flags to specify an appropriate set of
include paths for dependency analysis.

SCons will modify the Python sys. pat h variable to reflect the addition of repositories to the search path, so that
any imported modules or packages necessary for the build can be found in arepository, as well.

Iy
=== SCONS 23

Derived-file caching

If an up-to-date target file is found in a code repository, the file will not be rebuilt or copied locally. Files that must
exist locally (for example, to run tests) may be specified:

Local (' programi, 'libfoo.a")

in which case SCons will copy or link an up-to-date copy of the file from the appropriate repository.

4.11. Derived-file caching

SCons can maintain a cache directory of target files which may be shared anong multiple builds. This reduces build
times by allowing developers working on a project together to share common target files:

Cache(' /var/tnp/ buil d. cache/i 386")

When atarget file is generated, a copy is added to the cache. When generating atarget file, if SCons determines that
afile that has been built with the exact same dependencies already exists in the specified cache, SCons will copy the
cached file rather than re-building the target.

Command-line options exist to modify the SCons caching behavior for a specific build, including disabling caching,
building dependencies in random order, and displaying commands asif cached files were built.

4.12. Job management

A simple APl existsto inform the Build Engine how many jobs may be run simultaneously:

Jobs(limt = 4)

Iy
=== SCONS 24

5 Native Python Interface

The "Native Python" interface is the interface that the actual SCons utility will present to users. Because it exposes
the Python Build Engine API, SCons users will have direct access to the complete functionality of the Build Engine.
In contrast, a different user interface such as a GUI may choose to only use, and present to the end-user, a subset of
the Build Engine functionality.

5.1. Configuration files

SCons configuration files are simply Python scripts that invoke methods to specify target files to be built, rules for
building the target files, and dependencies. Common build rules are available by default and need not be explicitly
specified in the configuration files.

By default, the SCons utility searches for a file named SConstruct, Sconstruct, sconstruct,
SConst ruct. py, Sconstruct. py or sconstruct. py (in that order) in the current directory, and reads its
configuration from the first file found. A - f command-line option exists to read a different file name.

5.2. Python syntax

Because SCons configuration files are Python scripts, normal Python syntax can be used to generate or manipulate
lists of targets or dependencies:

sources = ['aaa.c', 'bbb.c', 'ccc.c']
env. Make(' bar', sources)

Python flow-control can be used to iterate through invocations of build rules:

objects = ['aaa.0', 'bbb.o', 'ccc.o0']
for obj in objects:
src = repl ace(obj,
env. Make(obj, src)

.0, '.c")

or to handle more complicated conditional invocations:

Subsidiary configuration Files

only build 'foo'" on Linux systemnms
if sys.platform=="1inuxl":
env. Make(' foo', 'foo.c')

Because SConsconfiguration filesare Python scripts, syntax errorswill be caught by the Python parser. Target-building
does not begin until after all configuration files are read, so a syntax error will not cause abuild to fail half-way.

5.3. Subsidiary configuration Files

A configuration file caninstruct SConsto read up subsidiary configurationfiles. Subsidiary filesare specified explicitly
inaconfiguration fileviathe SConscri pt method. Asusual, multiple file names may be specified with white space
separation, or in an array:

SConscript (' other file')
SConscript('filel file2")
SConscript(['file3", '"filed'])
SConscript(['file nane with white space'])

Anexplicitsconscri pt keyword may be used:
SConscri pt (sconscript = "other _file')

Including subsidiary configuration files is recursive: a configuration file included via SConscri pt may in turn
SConscr i pt other configuration files.

5.4. Variable scoping in subsidiary files

When a subsidiary configuration file is read, it is given its own namespace; it does not have automatic access to
variables from the parent configuration file.

Any variables (not just SCons objects) that are to be shared between configuration files must be explicitly passed in
the SConscri pt cal using the Export method:

env = Environment ()
debug = Environnent (CCFLAGS = '-g')
installdir = "'/usr/bin'

SConscri pt (' src/ SConscri pt', Export(env=env, debug=debug, installdir=installdir))

Which may be specified explicitly using a keyword argument:

env = Environment ()

debug = Environnent (CCFLAGS = '-g')
installdir = "'"/usr/bin'
SConscri pt (sconscript = 'src/SConscript',

export = Export(env=env, debug=debug, installdir=installdir))

Iy
=== SCONS 26

Hierarchical builds

Explicit variable-passing provides control over exactly what is available to a subsidiary file, and avoids unintended
side effects of changes in one configuration file affecting other far-removed configuration files (a very hard-to-debug
class of build problem).

5.5. Hierarchical builds

The SConscr i pt method is so named because, by convention, subsidiary configuration files in subdirectories are
named SConscri pt :

SConscri pt ("' src/ SConscript')
SConscript('lib/build nme')

When a subsidiary configuration file is read from a subdirectory, all of that configuration file's targets and build rules
are interpreted relative to that directory (as if SCons had changed its working directory to that subdirectory). This
allows for easy support of hierarchical builds of directory treesfor large projects.

5.6. Sharing construction environments

SCons will allow users to share construction environments, as well as other SCons objects and Python variables, by
importing them from a central, shared repository using normal Python syntax:

from Local Envi ronnents i nport optim zed, debug

optim zed. Make(' foo', 'foo.c')
debug. Make(' foo-d', 'foo.c')

The expectation is that some local tool-master, integrator or administrator will be responsible for assembling
environments (creating the Bui | der objectsthat specify thetools, options, etc.) and make these available for sharing
by all users.

The modules containing shared construction environments (Local Envi r onnent s in the above example) can be
checked in and controlled with the rest of the source files. This allows a project to track the combinations of tools and
command-line options that work on different platforms, at different times, and with different tool versions, by using
already-familiar revision control tools.

5.7. Help

The SCons utility provides a Hel p function to allow the writer of a SConst r uct file to provide help text that is
specific to the local build tree:

Hel p("""

Type:
scons . buil d and test everything
scons test build the software
scons src run the tests
scons web buil d the web pages

")
N

'—‘-‘ SCONS 27

Debug

This help text is displayed in response to the - h command-line option. Calling the Hel p function more than once
isan error.

5.8. Debug

SCons supports several command-line options for printing extrainformation with which to debug build problems.

See the -d, -p, -pa, and -pw options in the , below. All of these options make use of call-back functions to printed
by the Build Engine.

Iy
=== SCONS 28

6 Other Issues

No build toolsis perfect. Here are some SCons issues that do not yet have solutions.

6.1. Interaction with SC-config

The SC-config tool will be used in the SCons installation process to generate an appropriate default construction
environment so that building most software works "out of the box" on the installed platform. The SC-config tool will
find reasonable default compilers (C, C++, Fortran), linkers/loaders, library archive tools, etc. for specification in the
default SCons construction environment.

6.2. Interaction with test infrastructures

SCons can be configured to use SC-test (or some other test tool) to provide controlled, automated testing of software.
The Li nk method could link at est subdirectory to abuild subdirectory:

Link('test', 'build")
SConscri pt (' test/ SConscript')

Any test cases checked in with the source code will be linked into the t est subdirectory and executed. If
SConscri pt filesand test cases are written with thisin mind, then invoking:

% sccons test

Would run all the automated test cases that depend on any changed software.

6.3. Java dependencies

Java dependencies are difficult for an external dependency-based construction tool to accomodate. Determining Java
class dependencies is more complicated than the simple pattern-matching of C or C++ #i ncl ude files. From the
point of view of an external build tool, the Java compiler behaves "unpredictably" because it may create or update
multiple output class files and directories as aresult of itsinternal class dependencies.

An obvious SConsimplementation would beto havethe Scanner object parse output from Java -depend -ver boseto
calculate dependencies, but this has the distinct disadvantage of requiring two separate compiler invocations, thereby
slowing down builds.

Limitations of digital signature calculation

6.4. Limitations of digital signature calculation

In practice, calculating digital signatures of a file's contents is a more robust mechanism than time stamps for
determining what needs building. However:

1. Developers used to the time stamp model of Make can initially find digital signatures counter-intuitive. The
assumption that:

% touch file.c
will causearebuild of fi | e isstrong...

2. Abstracting dependency calculation into asingle digital signature loses alittle information: It isno longer possible
to tell (without laborious additional calculation) which input file dependency caused arebuild of agiven target file.
A feature that could report, "I'm rebuilding file X because it's out-of-date with respect to file Y," would be good,
but an digital-signature implementation of such afeature is non-obvious.

6.5. Remote execution

The ability to use multiple build systems through remote execution of tools would be good. This should be
implementabl e through the Job class. Construction environments would need modification to specify build systems.

6.6. Conditional builds

The ahility to check run-time conditions as suggested on the sc-discuss mailing list ("build X only if: the machineis
idle/ the file system has Y megabytes free space") would also be good, but is not part of the current design.

Iy
=== SCONS 30

7 Background

Most of theideasin SConsoriginate with Cons, aPerl-based software construction utility that hasbeenin useby asmall
but growing community since its development by Bob Sidebotham at FORE Systems in 1996. The Cons copyright
was transferred in 2000 from Marconi (who purchased FORE Systems) to the Free Software Foundation. I've been a
principal implementer and maintainer of Cons for several years.

Cons was originally designed to handle complicated software build problems (multiple directories, variant builds)
while keeping the input files simple and maintainable. The genera philosophy is that the build tool should “do the
right thing" with minimal input from an unsophisticated user, while still providing arich set of underlying functionality
for more complicated software construction tasks needed by experts.

In 2000, the Software Carpentry sought entries in a contest for a new, Python-based build tool that would provide an
improvement over Make for physical scientists and other non-programmers struggling to use their computers more
effectively. Prior to that, theidea of combining the superior build architecture of Conswith the easier syntax of Python
had come up several times on the cons- di scuss mailing list. The Software Carpentry contest provided the right
motivation to spend some actual time working on a design document.

After two rounds of competition, the submitted design, named ScCons, won the competition. Software Carpentry,
however, did not immediately fund implementation of the build tool, instead contracting for additional, more detailed
draft(s) of the design document. This proved to be not as strong motivation as actual coding, and after several months
of inactivity, | essentially resigned from the Software Carpentry effort in early 2001 to start working on the tool
independently.

After half ayear of prototyping some of the important infrastructure, | accumulated enough code to take the project
public at SourceForge, renaming it SConsto distinguish it slightly from the version of the design that won the Software
Carpentry contest while still honoring its roots there and in the original Cons utility. And also because it would be
ateensy hit easier to type.

8 Summary

SCons offers arobust and feature-rich design for an SC-build tool. With a Build Engine based on the proven design of
the Cons utility, it offersincreased simplification of the user interface for unsophisticated users with the addition of the
"do-the-right-thing" env. Make method, increased flexibility for sophisticated users with the addition of Bui | der

and Scanner objects, a mechanism to allow tool-masters (and users) to share working construction environments,
and embeddability to provide reliable dependency management in avariety of environments and interfaces.

9 Acknowledgements

I'm grateful to the following people for their influence, knowing or not, on the design of SCons:

Bob Sidebotham
First, asthe original author of Cons, Bob did thereal heavy lifting of creating the underlying model for dependency
management and software construction, as well as implementing it in Perl. During the first years of Cons
existence, Bob did a skillful job of integrating input and code from the first users, and consequently is a source
of practical wisdom and insight into the problems of real-world software construction. His continuing advice has
been invaluable.

The SCons Development Team
A big round of thanks go to those brave souls who have gotten in on the ground floor: David Abrahams, Charles
Crain, Steven Leblanc. Anthony Roach, and Steven Shaw. Their contributions, through their general knowledge
of software build issuesin general Python in particular, have made SCons what it is today.

The Cons Community
The real-world build problems that the users of Cons share on the cons-discuss mailing list have informed much
of the thinking that has gone into the SCons design. In particular, Rajesh Vaidheeswarran, the current maintainer
of Cons, has been avery steady influence. I've al so picked up valuable insight from mailing-list participants Johan
Holmberg, Damien Neil, Gary Oberbrunner, Wayne Scott, and Greg Spencer.

Peter Miller
Peter has indirectly influenced two aspects of the SCons design:

Miller's influential paper Recursive Make Considered Harmful was what led me, indirectly, to my involvement
with Cons in the first place. Experimenting with the single-Makefile approach he describesin RMCH led me to
conclude that while it worked as advertised, it was not an extensible scheme. This solidified my frustration with
Make and led me to try Cons, which at its core shares the single-process, universal-DAG model of the "RMCH"
single-Makefile technique.

The testing framework that Miller created for his Aegis change management system changed the way | approach
software development by providing aframework for rigorous, repeatable testing during development. It was my
success at using Aegisfor personal projects that led me to begin my involvement with Cons by creating the cons-
test regression suite.

Stuart Stanley
An experienced Python programmer, Stuart provided valuable advice and insight into some of the more useful
Python idioms at my disposal during the original Sc Cons; design for the Software Carpentry contest.

Gary Holt
| don't know which camefirst, thefirst-round Software Carpentry contest entry or thetool itself, but Gary'sdesign
for Make++ showed me that it is possible to marry the strengths of Cons-like dependency management with

backwards compatibility for Makef i | es. Striving to support both Makef i | e compatibility and a native Python
interface cleaned up the SCons design immeasurably by factoring out the common elementsinto the Build Engine.

Iy
=== SCONS 34

