1y
mmmm SCONS

Build your software, better.

SCons2.5.1

Design

Steven Knight

version 2.5.1
Copyright © 2001 Steven Knight
Publication date 2001

Copyright (c) 2001 Steven Knight Portions of this document, by the same author, were previously published Copyright 2000
by CodeSourcery LLC, under the Software Carpentry Open Publication License, the terms of which are available at http://
www.software-carpentry.com/openpub-license.html [http://www.software-carpentry.com/openpub-license.html].

http://www.software-carpentry.com/openpub-license.html
http://www.software-carpentry.com/openpub-license.html
http://www.software-carpentry.com/openpub-license.html

Table of Contents

O [gL oo [0 1o o R TP PP PP PPPPTRR 1
1.1, ADOUL THIS DOCUMENT ...eeetietiiit ettt ettt ettt e et e et e e et et e e e e et e e e e et e e e e nba s 1
2. BOBIS ..ttt et et e e e e e e e e 2
2.1 FIXiNG MaKE'S PrODIEIMSottt et e e et e ettt e e e ee e e e ena e eeens 3
2.2. FIXiNG CONS'S PrOBIEMS ...t 3
R O Y= oY= TSP SPPPTT 4
3Ll ATCRITECIUIE ...ttt et e e e e e et b e ettt e e e e e r e 4
I =10 1 o [= oo [T TSP UPPPTTRN 5
2.1 PYLNON AP .ttt e e aeen 5
3.2.2. SINGIE-IMAGE EXECULTON ... eieiii ettt ettt ettt e et e et et e e et e e e enaa s 5
3.2.3. DEPENTENCY @NAIYSIS ...eevuneeeiii ettt ettt ettt ettt et 5
3.2.4, CUSIOMIZEA OULPULcevveeeeeiie ettt ettt ettt e e ettt e e et et e et et e e e e b e e e eran s 6
325, BUIIA TAIIUIES ...ttt 6

R A 1= = o= PP PP PPPPP 6
3.3.1. Native PythOn INTEITACE ... coeeee et 6
3.3.2. MEKEFTIE TNEEITACE ... e 6
3.3.3. Graphical INEITACESuuiieei e 7

4. BUIIA ENGINE APl oo ettt e et e e et e e e e et e e a e aene 8
A1, GENEAl PIINCIPIES ...ttt ettt e ettt e ettt e et e bt e e e e r e e e e ees 8
4.1 1. KEYWOId @IQUIMIENESeeeteetetii e eetii ettt e ettt e e et e et et e e e e e b r e et e b e e e e et e e et et e e e ennan s 8
4.1.2. Internal ObjeCt FEPrESENLALIONceuru ittt ettt e e e e e e e 8

4.2. CoNStrucCti ON ENVI FTONIMBNTS oottt e e e e eees 8
421.Construction vari abl @S ... 9
4.2.2. Fetching construction variabl s ... 9
4.2.3. Copying aconsSt ruCt i 0N eNVi FONITENT ...oooiiiiiiiiiiiiee e e 9
4.2.4. Multipleconstructi ON envi FONIMBNT'S ..oouutiiiiiii e e 10
4.2.5. Variable SUDSHTULIONcooueiiiiei e 10

A.3. BUI 1 @I ODJECESeiiiiiieteei ettt ettt et et 11
4.3.1. SPecifying MUILIPIE INPUESiieii et 12
4.3.2. SPeCifying MUITIPIE tAIGELS ... o ieeee ettt 12
4.3.3. File prefixes and SUFTIXES i 13
4.3.4. BUi | der ODJECt EXCEPLIONSieeeii ittt et e e 13
4.3.5. User-defined Bui | der ObJECESiiiiieiieiii e 13
4.3.6. Copying Bui | der ODJECESiiiiiiiieiiii ettt e 14
4.3.7. SpeCial-purpose BUITA FUIEScooui e 15
4.3.8. The MBKE BUI | AT oot 15
A.3.9. BUI | OEBI MADS .ttt et ettt 15

A4, DEPENABNCIESeeetieeeeitt ettt ettt e et e ettt e e et e e et et e e et et e e et et e e et et e et et e e e 16
4.4.1. AULOMAELIC AEPENAENCIES ... ieiiiee ettt ettt ettt e e et e e e e e enaens 16
4.4.2. IMPlICIt ABPENAENCIESceiiii ettt e s 16
4.4.3. 1gNOriNG EPENAENCIESceiriieiiiit ettt et ettt ettt e e e e e e e eba s 17
4.4.4. EXPlICIt ABPENAENCIESceiiiiieeeii ettt e e 17

A5, SCANNET ODJECESeiiitii ettt ettt et e et e et e et e e et e e e eba s 17
4.5.1. User-defined SCanNer ObJECESiiiiiiiieiiii e 18
4.5.2. Copying SCANNET ODJECESuuueiiiti ettt ettt ettt e e e e e enanns 18
4.5.3. SCANNEE MRS ©..eeieitiei ettt et ettt et et e et e e e et e e ta et ae e ran e eena s 19

N N I (0= £ TP TUPPIN 19
A.6.1. BUIAING TAIGELS ...oeetneieiit ettt ettt ettt et e e e et e e e raa e e enees 19
4.6.2. REMOVING TAITELSeiitiieeiiti ettt ettt et e et e e et e e e et e e e e et e e e e ena s 19
4.6.3. Suppressing cleanup removal of DUIA-Targetsooevviiiiiiii e, 20
4.6.4. Suppressing build-target remOovalouuiiiiiiii e 20

~

'—‘—' SCONS iii

RSN B 1= 0 L = 1 (= 20

X =T = = o o PP 21

I A - 1 1= = = = 21

L R Ot (o 2] o o111 o U | 21

4.8. Separate Source and bUIIA TrEESu. i 22

e Y o o] o P 23
(OO0 LT (= o0 1S] (o =P 23

411, Derived-file CaChINGuecii i 24

2N o o T 40T = 1= 00T o PP 24

o NN = RVl i aTo g T g 1= 1 -t 25
5.1, Configuration fIlES ... iiviiii e e e 25

5.2, PYLNON SYNEAX ..uiiiiiiiiiic e aa 25

5.3. Subsidiary configuration FIlESiiiiiiiiiii e e 26

5.4. Variable scoping in subSidiary fil€Sccuuiiiiiiii i 26

5.5, HIerarchiCal DUITAScooveiiieei e e e et e e et e e e e et s 27

5.6. Sharing CONSt rUCt i ON ENVI F ONIMENT 'S .uuiiiiiiiii e e e e e e e e e e e 27

LT R = =T o TSR PPP 27

LIRS T DT oo PP 28

O g T= g =S L= S SPPR 29
6.1. Interaction With SC-CONFIQiuvniiii e e e e e e e e 29

6.2. Interaction With test INfrastrUCIUNESoeuueiiii e 29

LSRG - V7= W = 0 0 L= ot = 29

6.4. Limitations of digital signature CalCUlationccoovuiiiiiiiiiii e 30

B.5. REMOLE EXECULIONiiiiti ettt e e et e e et e e e e et e e e e et e e e e e et e e e e et e e e e st e eeeatnn s 30

LG @a o] 1o g = o U] o = PP 30

28 = - o (o | {1 o P 31
G TS 10 01007 Y PP UPTPPRP 32
LS o a0 LY 1= o o 1= 0T) 33

Iy
=== SCONS iv

List of Figures

G I S 0o o 3 AN o o 11 (=Tox 1<

Iy
=== SCONS

Introduction

The SCons tool provides an easy-to-use, feature-rich interface for constructing software. Architecturally, SCons sep-
arates its dependency analysis and external object management into an interface-independent Build Engine that could
be embedded in any software system that can run Python.

At the command line, SCons presents an easily-grasped tool where configuration files are Python scripts, reducing the
need to learn new build-tool syntax. Inexperienced users can use intelligent methods that *“do the right thing" to build
software with a minimum of fuss. Sophisticated users can use arich set of underlying features for finer control of the
build process, including mechanisms for easily extending the build process to new file types.

Dependencies are tracked using digital signatures, which provide more robust dependency analysis than file time
stamps. Implicit dependencies are determined automatically by scanning the contents of sourcefiles, avoiding the need
for laborious and fragile maintenance of static lists of dependenciesin configuration files.

The SCons tool supports use of files from one or more central code repositories, a mechanism for caching derived
files, and parallel builds. The tool aso includes a framework for sharing build environments, which allows system
administrators or integrators to define appropriate build parameters for use by other users.

1.1. About This Document

This document is an ongoing work-in-progress to write down the ideas and tradeoffs that have gone, and will go into,
the SCons design. As such, thisis intended primarily for use by developers and others working on SCons, although
it isalso intended to serve as a detailed overview of SCons for other interested parties. It will be continually updated
and evolve, and will likely overlap with other documentation produced by the project. Sections of this document that
deal with syntax, for example, may move or be copied into a user guide or reference manual.

So please don't assume that everything mentioned here has been decided and carved in stone. If you have ideas for
improvements, or questions about thingsthat don't seem to make any sense, please help improve the design by speaking
up about them.

2 Goals

As a next-generation build tool, SCons should fundamentally improve on its predecessors. Rather than simply being
driven by trying to not be like previous tools, SCons aims to satisfy the following goals:

Practicality
The SCons design emphasi zes an implementabl e feature set that lets users get practical, useful work done. SCons
is helped in this regard by its roots in Cons, which has had its feature set honed by several years of input from
adedicated band of users.

Portability
SCons is intended as a portable build tool, able to handle software construction tasks on a variety of operating
systems. It should be possible (although not mandatory) to use SCons so that the same configuration file buildsthe
same software correctly on, for example, both Linux and Windows NT. Consequently, SCons should hide from
users operating-system-dependent details such as filename extensions (for example, . 0 vs.. obj).

Usability
Novice users should be able to grasp quickly the rudiments of using SConsto build their software. This extends
to installing SCons, too. Installation should be painless, and the installed SCons should work "out of the box"
to build most software.

This goal should be kept in mind during implementation, when there is always a tendency to try to optimize too
early. Speed is nice, but not as important as clarity and ease of use.

Uility
SCons should also provide a rich enough set of features to accommodate building more complicated software
projects. However, the features required for building complicated software projects should not get in the way of
novice users. (See the previous goal.) In other words, complexity should be available when it's needed but not
required to get work done. Practically, thisimplies that SCons shouldn't be dumbed down to the point it excludes
complicated software builds.

Sharability
Asakey element in balancing the conflicting needsof Usabi | i t y andUt i | i t y, SConsshould provide mech-
anisms to alow SCons users to share build rules, dependency scanners, and other objects and recipes for con-
structing software. A good sharing mechanism should support the model wherein most developers on a project
use rules and templates that are created and maintained by alocal integrator or build-master,

Extensibility
SCons should provide mechanisms for easily extending its capabilities, including building new types of files,
adding new types of dependency scanning, being able to accomodate dependencies between objects other than
files, etc.

Fixing Make's problems

Flexibility
In addition to providing auseful command-line interface, SCons should provide the right architectural framework
for embedding its dependency management in other interfaces. SCons would help strengthen other GUIs or IDES
and the additional requirements of the other interfaceswould hel p broaden and solidify the core SCons dependency

management.

2.1. Fixing Make's problems

2.2. Fixing Cons's problems

Iy
=== SCONS 3

3 Overview

3.1. Architecture

The heart of SCons is its Build Engine. The SCons Build Engine is a Python module that manages dependencies
between external objects such as files or database records. The Build Engine is designed to be interface-neutral and
easily embeddable in any software system that needs dependency analysis between updatable objects.

The key parts of the Build Engine architecture are captured in the following quasi-UML diagram:

Figure 3.1. SCons Architecture

Environment

|

Builder

=

Scanner

Node

Intercessor

Dir

1

0.1 build()
srenode
scan()
1
0.1 epnode
1
1 Intercessor.FS Intercessor.DB
v
Node.FS Node.DB S
File Table Record Field

The point of SCons is to manage dependencies between arbitrary external objects. Consequently, the Build Engine
does not restrict or specify the nature of the external objects it manages, but instead relies on subclass of the Node
class to interact with the external system or systems (file systems, database management systems) that maintain the
objects being examined or updated.

Build Engine

The Build Engine presents to the software system in which it is embedded a Python API for specifying source (input)
and target (output) objects, rulesfor building/updating objects, rules for scanning objects for dependencies, etc. Above
its Python API, the Build Engine is completely interface-independent, and can be encapsulated by any other software
that supports embedded Python.

Software that chooses to use the Build Engine for dependency management interacts with it through Construction
Environments. A Construction Environment consists of a dictionary of environment variables, and one or more asso-
ciated Scanner objectsand Bui | der objects. The Python API is used to form these associations.

A Scanner object specifies how to examine atype of source object (C source file, database record) for dependency
information. A Scanner object may use variables from the associated Construction Environment to modify how it
scans an object: specifying a search path for included files, which field in a database record to consuilt, etc.

A Bui | der object specifies how to update a type of target object: executable program, object file, database field,
etc. LikeaScanner object, aBui | der object may use variables from the associated Construction Environment to
modify how it builds an object: specifying flags to a compiler, using a different update function, etc.

Scanner and Bui | der objectswill return one or more Node objects that represent external objects. Node objects
are the means by which the Build Engine tracks dependencies. A Node may represent a source (input) object that
should already exist, or atarget (output) object which may be built, or both. The Node classis sub-classed to represent
external objects of specific type: files, directories, database fields or records, etc. Because dependency information,
however, istracked by the top-level Node methods and attributes, dependencies can exist between nodes representing
different external object types. For example, building afile could be made dependent on the value of agiven fieldin
a database record, or a database table could depend on the contents of an externa file.

The Build Engine uses a Job class (not displayed) to manage the actual work of updating external target objects:
spawning commands to build files, submitting the necessary commands to update a database record, etc. The Job
class has sub-classes to handle differences between spawning jobsin parallel and serially.

The Build Engine also uses a Si gnhat ur e class (not displayed) to maintain information about whether an external
object is up-to-date. Target objects with out-of-date signatures are updated using the appropriate Bui | der object.

3.2. Build Engine

More detailed discussion of some of the Build Engine's characteristics:

3.2.1. Python API

The Build Engine can be embedded in any other software that supports embedding Python: inaGUI, in awrapper script
that interpretsclassic Makef i | e syntax, or in any other software that can transl ate its dependency representation into
the appropriate callsto the Build Engine API. describesin detail the specification for a"Native Python" interface that
will drive the SCons implementation effort.

3.2.2. Single-image execution
When building/updating the objects, the Build Engine operates as a single executable with acompl ete Directed Acyclic

Graph (DAG) of the dependenciesin the entire build tree. Thisisin stark contrast to the commonplace recursive use
of Make to handle hierarchical directory-tree builds.

3.2.3. Dependency analysis

Dependency analysisis carried out via digital signatures (a.k.a. "fingerprints'). Contents of object are examined and
reduced to a number that can be stored and compared to see if the object has changed. Additionally, SCons uses the

Iy
=== SCONS 5

Customized output

same signature technique on the command-linesthat are executed to update an object. If the command-line has changed
since the last time, then the object must be rebuilt.

3.2.4. Customized output

The output of Build Engine is customizable through user-defined functions. This could be used to print additional
desired information about what SConsis doing, or tailor output to a specific build analyzer, GUI, or IDE.

3.2.5. Build failures

SCons detects build failures via the exit status from the tools used to build the target files. By default, a failed exit
status (non-zero on UNIX systems) terminates the build with an appropriate error message. An appropriate class from
the Python library will interpret build-tool failures via an OS-independent API.

If multiple tasks are executing in aparallel build, and one tool returnsfailure, SConswill not initiate any further build
tasks, but allow the other build tasks to complete before terminating.

A - k command-line option may be used to ignore errors and continue building other targets. In no case will atarget
that depends on afailed build be rebuilt.

3.3. Interfaces

Aspreviously described, the SCons Build Engineisinterface-independent aboveits Python API, and can be embedded
in any software system that can trand ate its dependency requirements into the necessary Python calls.

The "main" SCons interface for implementation purposes, uses Python scripts as configuration files. Because this
exposes the Build Engine's Python API to the user, it is current called the "Native Python™" interface.

This section will also discuss how SConswill function in the context of two other interfaces: the Makef i | e interface
of the classic Make utility, and a hypothetical graphical user interface (GUI).

3.3.1. Native Python interface

The Native Python interface is intended to be the primary interface by which users will know SCons--that is, it is the
interface they will useif they actually type SCons at a command-line prompt.

In the Native Python interface, SCons configuration files are smply Python scripts that directly invoke methods from
the Build Engine's Python API to specify target files to be built, rules for building the target files, and dependencies.
Additional methods, specific to this interface, are added to handle functionality that is specific to the Native Python
interface: reading a subsidiary configuration file; copying target files to an installation directory; etc.

Because configuration files are Python scripts, Python flow control can be used to provide very flexible manipulation
of objects and dependencies. For example, afunction could be used to invoke a common set of methods on afile, and
called iteratively over an array of files.

As an additional advantage, syntax errors in SCons Native Python configuration files will be caught by the Python
parser. Target-building does not begin until after all configuration files are read, so a syntax error will not cause a
build to fail half-way.

3.3.2. Makefile interface

An aternate SConsinterface would provide backwards compatibility with the classic Make utility. Thiswould be done
by embedding the SCons Build Engine in a Python script that can trandate existing Makef i | esinto the underlying

Iy
=== SCONS 6

Graphical interfaces

calls to the Build Engine's Python API for building and tracking dependencies. Here are approaches to solving some
of the issues that arise from marrying these two pieces:

» Makefi | e suffix rules can betranslated into an appropriate Bui | der object with suffix maps from the Construc-
tion Environment.

» Long lists of static dependences appended to aMakef i | e by various " make depend” schemes can be preserved
but supplemented by the more accurate dependency information provided by Scanner objects.

» Recursive invocations of Make can be avoided by reading up the subsidiary Makef i | e instead.

Lest this seem like too outlandish an undertaking, there is a working example of this approach: Gary Holt's Make++
utility isaPerl script that provides admirably complete parsing of complicated Makef i | esaround an internal build
engine inspired, in part, by the classic Cons utility.

3.3.3. Graphical interfaces

The SCons Build Engine is designed from the ground up to be embedded into multiple interfaces. Consequently,
embedding the dependency capabilities of SCons into graphical interface would be a matter of mapping the GUI's
dependency representation (either implicit or explicit) into corresponding calls to the Python API of the SCons Build
Engine.

Note, however, that this proposal leaves the problem of designed a good graphical interface for representing software
build dependencies to people with actual GUI design experience...

Iy
=== SCONS 7

4 Build Engine API

4.1. General Principles

4.1.1. Keyword arguments

All methods and functionsin this APl will support the use of keyword argumentsin calls, for the sake of explicitness
and readability. For brevity in the hands of experts, most methods and functionswill also support positional arguments
for their most-commonly-used arguments. As an explicit example, the following two lines will each arrange for an
executable program named f oo (or f 00. exe on aWin32 system) to be compiled from thef 0o. ¢ sourcefile:

env. Program(target = 'foo', source = 'foo.c')

env. Program(' foo', 'foo.c')

4.1.2. Internal object representation

All methods and functions use internal (Python) objects that represent the external objects (files, for example) for
which they perform dependency analysis.

All methods and functionsin this API that accept an external object as an argument will accept either a string descrip-
tion or an object reference. For example, the two following two-line examples are equivalent:

env. Qbj ect (target = 'foo.0', source = 'foo.c')

env. Progranm(target = 'foo', 'fo0o0.0") # builds foo fromfoo.o
foo_obj = env.ject(target = 'foo.0', source = 'foo.c')

env. Progranm(target = 'foo', foo_obj) # builds foo fromfoo.o

4.2. Construction Environnents

A construction environnent isthebasic meansby which a software system interacts with the SCons Python
API to control abuild process.

Construction vari abl es

A construction environnent isan object with associated methods for generating target files of various types
(Bui | der objects), other associated object methods for automatically determining dependencies from the contents
of various types of source files (Scanner objects), and adictionary of values used by these methods.

Passing no argumentsto the Envi r onnment instantiation createsaconst ructi on envi r onnment with default
values for the current platform:

env = Environment ()

4.2.1. Construction vari abl es

A construction environment hasan associated dictionary of constructi on vari abl es that control
how the build is performed. By default, the Envi r onment method creates aconstructi on envi r onment

with values that make most software build "out of the box" on the host system. These default values will be generated
at the time SCons is installed using functionality similar to that provided by GNU Autoconf. * At a minimum, there
will be pre-configured sets of default values that will provide reasonable defaults for UNIX and Windows NT.

The default const ructi on envi ronment values may be overridden when anew constructi on envi -
ronment iscreated by specifying keyword arguments:

env = Environment (CC = 'gcc',
CCFLAGS = '-g',
CPPPATH = [".", "src', "/usr/include'],
LI BPATH = ["/usr/lib", ".'])

4.2.2. Fetching constructi on vari abl es

A copy of thedictionary of constructi on vari abl es canbereturned using the Di ct i onar y method:

env = Environnent ()
dict = env.Dictionary()

If any arguments are supplied, then just the corresponding value(s) are returned:

ccflags = env. Di cti onary(' CCFLAGS')
cc, Ild = env.Dictionary('CC, 'LD)

4.2.3. Copying aconstructi on environment

A method exists to return a copy of an existing environment, with any overridden values specified as keyword argu-
ments to the method:

L1t would be nice if we could avoid re-inventing the wheel here by using some other Python-based tool Autoconf replacement--like what was
supposed to come out of the Software Carpentry configuration tool contest. It will probably be most efficient to roll our own logic initially and
convert if something better does come along.

Iy
=== SCONS 9

Multipleconst ructi on envi ronnents

env = Environnent ()
debug = env. Copy(CCFLAGS = '-g')

4.2.4. Multiple constructi on environnments

Different external objects often require different build characteristics. Multipleconst ructi on envi ronnent s
may be defined, each with different values:

env = Environment (CCFLAGS = '")

debug = Environnent (CCFLAGS = '-g')

env. Make(target = '"hello', source = '"hello.c")

debug. Make(target = 'hello-debug', source = "hello.c")

Dictionaries of values from multiple constructi on environments may be passed to the Envi r onment
instantiation or the Copy method, in which case the last-specified dictionary value wins:

envl Envi ronnent (CCFLAGS = '-0O, LDFLAGS = '-d')
env2 Envi ronnent (CCFLAGS = '-g')
new = Environnent (envl. Dictionary(), env2.Dictionary())

The newenvironment in the above exampleretains LDFLAGS = ' - d' fromtheenv1 environment, and CCFLAGS
= '-g"' fromtheenv2 environment.

4.2.5. Variable substitution

Within a construction command, any variable from the const ructi on envi r onment may be interpolated by
prefixing the name of the construction with $:

MyBui | der = Bui | der (command = "$XX $XXFLAGS -c¢ $_INPUTS -0 $target")

"bar.out', sources = 'bar.in',
"sed '1d'" < $source > $target")

env. Command(t arget s
comand

Variable substitution is recursive: the command line is expanded until no more substitutions can be made.
Variable names following the $ may be enclosed in braces. This can be used to concatenate an interpolated value with
an a phanumeric character:

Ver boseBui | der = Bui |l der (command = "$XX - ${ XXFLAGS}v > $target")

Thevariablewithin braces may contain apair of parentheses after aPython function nameto be evaluated (for example,
${map() }). SConswill interpolate the return value from the function (presumably a string):

env = Environment (FUNC = nyfunc)
env. Command(target = 'foo.out', source = 'foo.in",

Iy
=== SCONS 10

Bui | der Objects

command = "${FUNC($<)}")

If areferenced variable isnot defined inthe const ructi on envi r onnent , the null string is interpolated.
The following special variables can also be used:

$targets
All target file names. If multiple targets are specified in an array, $t ar get s expandsto the entire list of targets,
separated by a single space.

Individual targets from a list may be extracted by enclosing the t ar get s keyword in braces and using the
appropriate Python array index or dice:

${targets[0]} # expands to the first target
${targets[1:]} # expands to all but the first target

${targets[1l:-1]} # expands to all but the first and | ast targets

$t ar get
A synonym for ${ t ar get s[0] }, thefirst target specified.

$sour ces
All input file names. Any input file names that are used anywhere else on the current command line (via
${sources[0]},${sources{[1]}, etc.) are removed from the expanded list.

Any of the above special variables may be enclosed in braces and followed immediately by one of the following
attributes to select just a portion of the expanded path name:

. base
Basename: the directory plus the file name, minus any file suffix.

.dir
The directory in which the filelives. Thisis arelative path, where appropriate.

file
The file name, minus any directory portion.

.suffix
The file name suffix (that is, the right-most dot in the file name, and all charactersto the right of that).

.fil ebase
The file name (no directory portion), minus any file suffix.

. abspat h
The absolute path to thefile.

4.3. Bui | der Objects

By default, SCons supplies (and uses) a number of pre-defined Bui | der objects:

bj ect compile or assemble an object file
Li brary archivefilesinto alibrary
&

'—‘—' SCONS 11

Specifying multiple inputs

Shar edLi brary archivefilesinto a shared library
Program link objects and/or libraries into an executable
Make build according to file suffixes; see below

Aconstruction environment canbeexplicitly initialized with associated Bui | der objectsthat will be bound
totheconstructi on environnent object:

env = Environnment (BUI LDERS = [' Object', 'Program])

Bui | der objectsboundtoaconstructi on environment can be called directly as methods. When invoked,
aBui | der object returnsa (list of) objects that it will build:

obj = env. Cbject(target ='hello.o', source = "hello.c")
lib = env. Library(target ='libfoo.a',
source = ['aaa.c', 'bbb.c'])
slib = env. SharedLi brary(target ='libbar.so',
source = ['xxx.c', 'yyy.c'])
prog = env. Program(target ='hello',
source = ['hello.o', '"libfoo.a', 'libbar.so'])

4.3.1. Specifying multiple inputs

Multiple input filesthat go into creating atarget file may be passed in as a single string, with the individual file names
separated by white space:

env. Li brary(target = 'foo.a', source = 'aaa.c bbb.c ccc.c')
env. Qbj ect (target = 'yyy.o', source = 'yyy.c')
env. Program(target = '"bar', source = 'xxx.c yyy.o foo.a')

Alternatively, multiple input files that go into creating a target file may be passed in as an array. This allows input
files to be specified using their object representation:

env. Li brary(target = 'foo.a', source = ['aaa.c', 'bbb.c', 'ccc.c'])
yyy_obj = env.bject(target = 'yyy.o', source = 'yyy.c')
env. Program(target = '"bar', source = ['xxx.c', yyy obj, 'foo.a'])

Individual string elementswithin an array of input files are not further split into white-space separated file names. This
allows file names that contain white space to be specified by putting the value into an array:

env. Program(target = 'foo', source = ['an input file.c'])

4.3.2. Specifying multiple targets

Conversely, the generated target may be a string listing multiple files separated by white space:

Iy
=== SCONS 12

File prefixes and suffixes

env. Qbj ect (target = 'grammar.o y.tab.h', source = 'granmar.y')

An array of multiple target files can be used to mix string and object representations, or to accomodate file names
that contain white space:

env. Program(target = ['ny programi], source = 'input.c')

4.3.3. File prefixes and suffixes

For portability, if the target file name does not already have an appropriate file prefix or suffix, the Bui | der objects
will append one appropriate for the file type on the current system:

builds "hello.o' on UNI X, 'hello.obj' on Wndows NT:
obj = env.nject(target =" hello', source = 'hello.c")

builds 'libfoo.a" on UNIX, 'foo.lib" on Wndows NT:
lib = env.Library(target ='foo', source = ['aaa.c', 'bbb.c'])

builds 'libbar.so’" on UNIX, '"bar.dll' on Wndows NT:
slib = env. SharedLi brary(target ='bar', source = ['xxx.c', "yyy.c'])

builds 'hello" on UNI X, 'hell o.exe' on Wndows NT:

prog = env. Program(target ='hello',
source ["hello.o', '"libfoo.a', 'libbar.so'])

4.3.4. Bui | der object exceptions

Bui | der objects raise the following exceptions on error:

4.3.5. User-defined Bui | der objects

Users can define additional Bui | der objects for specific externa object types unknown to SCons. A Bui | der
object may build its target by executing an external command:

WebPage = Buil der (command = ' ht ml gen $HTM_.GENFLAGS $sources > $target',
suffix = '.htm",
src_suffix ="'.in")

Alternatively, aBui | der object may also build its target by executing a Python function:

def updat e(dest):
[code to update the object]
return 1

O herBui | der1 = Bui |l der(function = update,

Iy
=== SCONS 13

Copying Bui | der Objects

src_suffix =['.in", '".input'])

An optional argument to pass to the function may be specified:

def update_arg(dest, arg):
[code to update the object]
return 1

O her Bui | der2 = Bui |l der(function = update_arg,
function_arg = 'xyzzy',
src_suffix =['.in", '".input'])

Both an external command and an internal function may be specified, in which case the function will be called to build
the object first, followed by the command line.

User-defined Bui | der objects can be used like the default Bui | der objectsto initialize const ructi on en-
Vi ronnents.

WebPage = Bui |l der (conmand = ' ht ml gen $HTMLGENFLAGS $sources > $target’,

suffix ='.htm",

src_suffix ="'.in")
env = Environnent (BU LDERS = [' WebPage'])
env. WbPage(target = 'foo.html', source = 'foo.in")
Builds "bar.html' on UNI X, 'bar.htm on W ndows NT:
env. WebPage(target = '"bar', source = 'bar.in")

The command-line specification can interpolate variablesfromtheconst ruct i on envi ronnent ; see"Variable
substitution," above.

A Bui | der object may optionally beinitialized with alist of:

« the prefix of the target file (e.g., 'lib' for libraries)

« the suffix of the target file (e.g., ".a@ for libraries)

« the expected suffixes of theinput files (e.g., ".0' for object files)

These arguments are used in automatic dependency analysis and to generate output file names that don't have suffixes
supplied explicitly.

4.3.6. Copying Bui | der Objects

A Copy method exists to return a copy of an existing Bui | der object, with